**УΔК 169.14** 

## ИЗМЕНЕНИЯ ПРОЧНОСТНЫХ СВОЙСТВ ЛЕГИРОВАННЫХ ВАНАДИЕМ И АЗОТОМ ВЫСОКОУГЛЕРОДИСТЫХ СТАЛЕЙ ПРИ ЦИКЛИЧЕСКОМ ТЕПЛОВОМ ВОЗДЕЙСТВИИ

Д.т.н., академик НАН Беларуси Витязь П.А., д.т.н. Жорник В.И., д.ф.-м.н. Кукареко В.А., Ковалева С.А., д.т.н. Шипицын С.Я.

Объединенный институт машиностроения НАН Беларуси, Физико-технологический институт металлов и сплавов НАН Украины

Современные тенденции развития железнодорожного транспорта в значительеной степени связаны с увеличением скорости движения и повышением грузоподъемности подвижного состава, что требует создания новых материалов для производства рельсов и железнодорожных колес. В настоящее время для массового производства рельсов и колес применяются нелегированные и низколегированные высоко- и среднеуглеродистые перлитные стали, повышение прочностных свойств которых обычно достигается либо изменением химического состава стали путем её легирования, либо термической обработкой. В сталях этих классов повышение статической прочности за счет увеличения содержания углерода сопровождается снижением циклической прочности, статической и циклической вязкости разрушения, пластичности, контактной выносливости [1-3]. Кроме того эти стали имеют недостаточные усталостную и термическую прочность, теплостойкость, холодостойкость, склонны к образованию аустенитных слоев с последующим  $\gamma \rightarrow M$  превращением при локальном нагреве поверхностных зон до температур выше Ac1 и Ac3 при скольжении и буксовании колеса.

Деградация структуры при циклическом тепловом и силовом воздействии, главным образом, заключается в коагуляции цементитной фазы, развитии вторичной микрохимической и структурной неоднородности. Вследствие этого уменьшается прочность металла, возрастает эффективность локального накопления напряжений, необходимых для зарождения и развития усталостных и термических трещин, что приводит к снижению теплостойкости, усталостной и термической выносливости, износостойкости металла.

Торможение этих процессов возможно за счет создания дополнительных дисперсионных упрочняющих фаз, более термодинамически стабильных, чем цементитные включения, а также путем снижения диффузионной подвижности углерода и изменения направления его диффузии при циклическом тепловом и силовом воздействии. В ранее проведенных исследованиях показано, что со значительной эффективностью имеет перспективу метод микролегирования металла азотом и ванадием [2].

В данной работе приведены результаты исследований по влиянию термоциклирования на механические свойства легированных азотом и ванадием высокоуглеродистых сталей с различным видом структуры (перлитной, бейнитной, мартенситной).

Химический состав исследованных доэвтектоидной (70 $\Gamma$ 2CA $\Phi$ ) и эвтектоидной (80 $\Gamma$ 2C $\Phi$ ) сталей приведен в таблице 1.

| Марки-<br>ровка<br>плавки | Марка<br>стали | Массовая доля элемента, % |      |      |      |        |      |       |       |  |
|---------------------------|----------------|---------------------------|------|------|------|--------|------|-------|-------|--|
|                           |                | С                         | Si   | Mn   | V    | N      | Cr   | S     | Р     |  |
| Б1                        | 80Г2СФ         | 0,85                      | 0,71 | 1,99 | 0,13 | 0,0037 | 0,40 | 0,024 | 0,055 |  |
| Б2                        | 70Г2САФ        | 0,71                      | 0,43 | 1,64 | 0,17 | 0,010  | 0,69 | 0,017 | 0,049 |  |

Таблица 1 - Химический состав плавок сталей и их маркировка

Термоциклирование образцов с различным исходным структурным состоянием проводилось нагреванием до температуры 500 °C с выдержкой в течение 15 мин и последующим охлаждением в воде. Количество циклических теплосмен — 100. Испытания на растяжение (ГОСТ 1497-84) проводились на универсальной испытательной машине INSTRON Satec 300LX. Скорость нагружения составляла 2 и 5 мм/мин. Испытания образцов на усталость проводились по методу симметричного консольного изгиба плоского образца при заданной амплитуде колебаний с частотой 24,7 Гц.

На рисунке 1 приведены диаграммы растяжения высокоуглеродистых сталей с различной структурой в исходном состоянии до термоциклирования и после.

ВИТЕБСК 2015 57

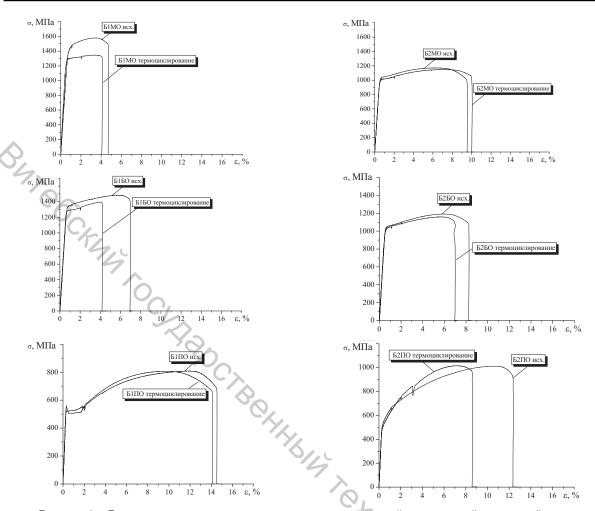



Рисунок 1 – Диаграммы растяжения высокоуглеродистых сталей с различной структурой в исходном состоянии до и после термоциклирования при 770 К (100 циклов).

В таблице 2 приведены данные, характеризующие механические свойства при растяжении высокоуглеродистых сталей с различной структурой в исходном состоянии до и после термоциклирования.

Таблица 2 – Показатели механических свойств при испытании на растяжение высокоуглеродистых

сталей с различной структурой

| Transfer t paterns men trypingers |                     |         |                        |       |                      |       |                      |       |  |
|-----------------------------------|---------------------|---------|------------------------|-------|----------------------|-------|----------------------|-------|--|
| Маркировка                        | Модуль упругости Е, |         | Предел текучести       |       | Предел прочности,    |       | Удлинение при        |       |  |
| образца                           | MPa                 |         | σ <sub>0,2</sub> , MPa |       | σ <sub>B</sub> , MPa |       | разрыве $\delta$ , % |       |  |
| ооразца                           | до                  | после   | до                     | после | до                   | после | ДО                   | после |  |
| Б1МО (мартенсит)                  | -                   | 199 937 | 1 361                  | 1 300 | 1 580                | 1 347 | 4,73                 | 4,13  |  |
| Б2МО (мартенсит)                  | 198 965             | 202 770 | 1 015                  | 1 008 | 1 171                | 1 149 | 9,58                 | 10,06 |  |
| Б1БО (бейнит)                     | 197 833             | 208 269 | 1 344                  | 1 285 | 1 481                | 1 394 | 6,98                 | 4,22  |  |
| Б2БО (бейнит)                     | 194 701             | 204 359 | 1 034                  | 1 051 | 1 160                | 1 192 | 7,01                 | 8,29  |  |
| Б1ПО (перлит)                     | 196 419             | 192 348 | 521                    | 516   | 809                  | 808   | 14,54                | 14,12 |  |
| Б2ПО (перлит)                     | 193 169             | 199 437 | 561                    | 529   | 1 013                | 1 016 | 12,38                | 8,63  |  |

В исходном состоянии сталь 80Г2СФ (Б1) после обработки на мартенсит (Б1МО) и бейнит (Б1БО) характеризуется более высокими (~1,3 раза) прочностными характеристиками и низкой (~2 раза) пластичностью по сравнению со сталью 70Г2САФ (Б2МО и Б2БО). Указанное различие, по-видимому, обусловлено более высоким содержанием углерода в стали 80Г2СФ. В то же время сталь 80Г2СФ после обработки на перлит (Б1ПО) имеет более низкий предел текучести (~1,1 раза) и предел прочности (~1,25 раза) по сравнению со сталью 70Г2САФ (Б2ПО). Повышенные прочностные свойства стали 70Г2САФ в перлитном состоянии могут быть обусловлены присутствием в ней высокопрочных нитридов ванадия и хрома, формирующихся при более высоком содержании в ней азота, ванадия и хрома по сравнению со сталью 80Г2СФ.

Термоциклирование сталей 80Г2СФ и 70Г2САФ приводит к снижению их прочностных свойств и характеристик пластичности. При этом наиболее заметное разупрочнение стали 80Г2СФ регистрируется для исходного мартенситного (Б1МО) и бейнитного (Б1БО) состояний. Прочностные свойства сталей с исходным перлитным состоянием при термоциклировании практически не изменяются.

Наиболее высокая циклическая долговечность регистрируется после обработки сталей на мартенситную структуру (Б1МО, Б2МО) и составляет  $(7,0-8,7)\cdot 10^5$  циклов при напряжениях 440–450 МПа. Стали с

58 ВИТЕБСК 2015

бейнитной структурой (Б1БО, Б2БО) имеют долговечность  $(3,0-4,5)\cdot 10^5$  циклов при напряжениях 405–455 МПа. Наиболее низкую долговечность  $(0,9-1,1)\cdot 10^5$  циклов при напряжениях 445–450 МПа исследуемые стали имеют после обработки на перлитную структуру (Б1ПО, Б2ПО). Термоциклирование приводит к снижению циклической долговечности сталей с исходной мартенситной (Б1МО, Б2МО) и бейнитной (Б1БО, Б2БО) структурами (до  $(2,3-2,5)\cdot 10^5$  циклов и  $(0,8-1,7)\cdot 10^5$  циклов соответственно), однако способствует заметному возрастанию циклической долговечности (до  $(1,8-2,9)\cdot 10^5$  циклов) сталей с исходной перлитной структурой (Б1ПО, Б2ПО). Подобная закономерность может быть связана со сфероидизацией перлитной структуры, а также дополнительным выделением карбидных и нитридных частиц в процессе термоциклической обработки.

Работа выполнена в рамках договора БРФФИ № Т13К-049.

## Список использованных источников

- Шипицын, С. Я. Перспективы повышения надежности и долговечности железнодорожных колес / С. Я. Шипицын, Ю. З. Бабаскин, И. Ф. Кирчу, Н. Я. Золотарь, Л. Г. Смолякова // Металл и Литье Украины. – 2008. - №6. – С.8-11.
- 2. Шипицын, С.Я. Микролегированная сталь для железнодорожных колес / С.Я. Шипицын, Ю.З. Бабаскин, И.Ф. Кирчу, Н. Я. Золотарь, Л. Г. Смолякова // Сталь. 2008. №9. С.76-79.
- 3. Шипицын, С.Я. Высокоуглеродистые стали с дисперсионным нитридным упрочнением для транспортного и других видов машиностроения/ С.Я. Шипицын, Ю.З. Бабаскин, Т.В. Степанова, В.П. Короленко, Н.Я. Золотарь, Д.Н. Короленко, О.П. Осташ, В.И. Жорник // Металл и литье Украины. 2014. №9 (256),

УДК 687.1.004.12:677.017.8

## ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ ВОЗДУХОПРОНИЦАЕМОСТИ ЖЕНСКИХ КУРТОК ОТ СОСТАВА ПАКЕТА

Студ. Шпагина О.С., д.т.н., проф. Ковчур С.Г., ст. преп. Лобацкая О.В., доц. Гарская Н.П.

Витебский государственный технологический университет

Воздухопроницаемость – это способность текстильных полотен пропускать воздух. Она характеризуется коэффициентом воздухопроницаемости  $B_p$ ,  $д M^3 / (M^2 \cdot c)$ , который показывает, какое количество воздуха проходит через единицу площади в единицу времени при определенной разнице давлений по обе стороны полотна:

$$B_p = \frac{v}{s \times t}$$

где V – объем воздуха, прошедшего через полотно, дм; S – площадь полотна, м; t – длительность прохождения воздуха, c; p – показатель перепада давления.

Воздухопроницаемость современных текстильных материалов колеблется в широких пределах:  $3,5-1500 \text{ дм}^3 / \text{м}^2 \cdot \text{с}$ . Воздухопроницаемость обеспечивает естественную вентиляцию пододежного слоя, что особенно важно для летней и спортивной одежды.

Наиболее высокой воздухопроницаемостью обладают летние хлопчатобумажные и шёлковые ткани –  $500-1500~\rm{дm}^3~/(m^2~c)$ ; пальтовые – 10-20, а ветрозащитные со специальной обработкой –  $6-10~\rm{дm}^3~/(m^2~c)$ , однако это выше воздухопроницаемости натурального меха –  $1~\rm{дm}^3~/(m^2~c)$ .

Показатель воздухопроницаемости мы определяли на приборе ВПТМ-2. В таблице 1 представлены пакеты материалов, сформированных нами для проведения данного исследования.

Таблица 1 – Пакеты материалов для исследования

| №<br>пакета | Название ткани верха | Подкла<br>дка | •      | Толщина, |        | Воздухопроницаемость<br>дм³/м²*с при: |      |       |
|-------------|----------------------|---------------|--------|----------|--------|---------------------------------------|------|-------|
| Пакета      |                      |               | X70    | В        | C150   | X70                                   | B150 | C150  |
| 1           | Ткань Грета, камуф   | B365 212 ПГ   | 1,576  | 3,264    | 3,706  | 87                                    | 60,5 | 143,5 |
| 2           | Пальтовая ткань04С5  |               | 1,32   | 2,99     | 2,7875 | 83,5                                  | 57,5 | 130,5 |
| 3           | Ткань Грета, черная  |               | 1,708  | 3,392    | 3,002  | 83                                    | 71,5 | 181   |
| 4           | Спецткань Сису       |               | 1,4    | 3,076    | 2,758  | 89                                    | 64   | 136   |
| 5           | Драп                 |               | 3,908  | 5,3675   | 5,212  | 84                                    | 87   | 175   |
| 6           | Диагональ            |               | 1,71   | 3,17     | 3,13   | 157                                   | 130  | 175   |
| 7           | KKB-112MZ            |               | 1,2675 | 2,805    | 2,48   | 13,7                                  | 8,7  | 119   |
| 8           | XSF11340             |               | 1,6    | 3,05     | 2,84   | 86                                    | 73,5 | 137   |
| 9           | ND30D WHITE          |               | 1,206  | 2,66     | 2,434  | 83,5                                  | 75,5 | 138,5 |
| 10          | 230T Red             |               | 1,3075 | 2,78     | 2,5175 | 13,5                                  | 8,9  | 119   |
| 11          | GV0230PV             |               | 1,84   | 2,794    | 2,634  | 9,5                                   | 7,5  | 133,5 |
| 12          | SHT-SE47SW           |               | 1,43   | 2,97     | 2,7075 | 43,8                                  | 31   | 131,5 |
| 13          | SD62011RC            |               | 1,36   | 2,82     | 2,62   | 45                                    | 26,4 | 132,5 |
| 14          | DEWSPO               |               | 1,29   | 2,79     | 2,645  | 28,6                                  | 17,4 | 132   |

ВИТЕБСК 2015 59