Е. Б. Дунина, А. А. Корниенко

ВЛИЯНИЕ МЕЖКОНФИГУРАЦИОННОГО ВЗАИМОДЕЙСТВИЯ НА ИНТЕНСИВНОСТИ АБСОРБЦИОННЫХ ПЕРЕХОДОВ УРАНА

Введение

С целью поиска новых лазерных материалов были синтезированы кристаллы, активированные ионами U⁴⁺ и Am³⁺ [1, 2]. У кристаллов с примесью U⁴⁺(5 f^2) более широкие спектральные линии и интенсивности межмультиплетных переходов в 100 раз больше, чем у иона Pr³⁺(4 f^2).

В теоретическом плане кристаллы с примесью ионов U⁴⁺ интересны тем, что применение приближения Джадда-Офельта [3, 4] для описания интенсивностей межмультиплетных электрических дипольных переходов менее успешно, чем к материалам с примесью ионов Ln³⁺ [2, 5]. Возможно, это обусловлено более сильным межконфигурационным взаимодействием. Поскольку всестороннее исследование этих эффектов отсутствует, представляется актуальным выполнить сравнительный анализ применимости различных приближений для учета влияния межконфигурационного взаимодействия на интенсивности 5*f*-5*f* переходов иона U⁴⁺. В связи с этим в данной работе приведены основные формулы теории интенсивностей и выполнено описание экспериментальных сил осцилляторов иона U⁴⁺ в кристалле ThBr₄ и комплексов UBr₄ в растворе HBr.

Основные формулы теории интенсивностей

Интенсивность межмультиплетных электрических дипольных переходов можно характеризовать силой линии

$$S_{JJ'} = \sum_{MM'} \left| \left\langle \gamma J M \left| \vec{D} \right| \gamma' J' M' \right\rangle \right|^2, \tag{1}$$

где \vec{D} – электрический дипольный момент. Сила линии не зависит от направления перехода и измеряется в 10⁻²⁰ см². Иногда интенсивность переходов характеризуют безразмерной величиной – силой осциллятора

$$f_{JJ'} = \frac{8\pi^2 mc\sigma}{3(2J+1)he^2} \frac{(n^2+2)^2}{9n} S_{JJ'},$$
 (2)

где n – показатель преломления среды, σ – энергия перехода в см⁻¹, 2J + 1 – степень вырождения исходного мультиплета.

Электрические дипольные переходы между состояниями конфигурации $5f^N$ запрещены по четности. Однако для ионов в кристалле этот запрет частично снимается из-за примеси состояний возбужденных конфи- гура-

ций. В зависимости от приближения, в котором учитывается влияние возбужденных конфигураций, получаются разные выражения для силы линии межмультиплетного перехода.

В приближении слабого конфигурационного взаимодействия (приближении Джадда-Офельта [3, 4]) предполагается, что энергия возбужденных конфигураций значительно больше энергии мультиплетов. Поэтому возбужденные конфигурации в одинаковой степени воздействуют на разные мультиплеты конфигурации $5f^N$. Формула для силы линии перехода в этом приближении имеет самый простой вид [6]

$$S_{JJ'} = e^2 \sum_{k=2,4,6} \Omega_k \left\langle \gamma J \left\| U \right\|^k \gamma' J' \right\rangle^2, \qquad (3)$$

где Ω_k – единый набор параметров интенсивности для всех межмультиплетных переходов, $\langle \gamma J \| U^k \| \gamma' J' \rangle$ – приведенные матричные элементы единичного тензора U^k , вычисленные на волновых функциях в приближении свободного иона.

В действительности энергии нижайших возбужденных конфигураций ионов с незаполненной 5f – оболочкой сравнимы по величине с энергией высоко лежащих мультиплетов и условие применения приближения слабого конфигурационного взаимодействия не выполняется. Более корректно влияние возбужденных конфигураций можно учесть в приближении либо промежуточного, либо сильного конфигурационного взаимодействия [6].

В приближении промежуточного конфигурационного взаимодействия выражение для силы линии перехода

$$S_{JJ'} = e^{2} \sum_{k=2,4,6} \underbrace{\Omega_{k} \left[1 + 2R_{k} \left(E_{J} + E_{J'} - 2E_{f}^{0} \right) \right]}_{\widetilde{\Omega}_{k}} \left\langle \gamma J \left\| U^{k} \right\| \gamma' J' \right\rangle^{2}$$
(4)

по сравнению с выражением (3) содержит дополнительно параметры R_k , которые зависят от величины межконфигурационного взаимодействия, энергии $E_{\gamma J}$ и $E_{\gamma J'}$ мультиплетов, включенных в переход и энергии E_f^0 центра тяжести конфигурации $5f^N$. Параметры интенсивности $\tilde{\Omega}_k$ линейно зависят от энергии мультиплетов.

В приближении сильного конфигурационного взаимодействия сила линии перехода

$$S_{JJ'} = e^{2} \sum_{k=2,4,6} \underbrace{\Omega_{k} \left[\frac{\Delta}{\Delta - E_{\gamma J}} + \frac{\Delta}{\Delta - E_{\gamma' J'}} \right]^{2}}_{\widetilde{\Omega}_{k}} \left\langle \gamma J \left\| U^{k} \right\| \gamma' J' \right\rangle^{2}$$
(5)

также зависит от энергии мультиплетов, но по другому закону, чем в приближении промежуточного конфигурационного взаимодействия (3). Здесь Δ – энергия возбужденной конфигурации, остальные обозначения такие же, как в (2) и (3).

Следует заметить, что параметры интенсивности Ω_k не могут принимать отрицательные значения, в то время как дополнительные параметры R_k могут быть любого знака.

Сравнительный анализ применимости различных приближений и выводы

ТАБЛИЦА І

	1	Силы осцилляторов в 10 ⁻⁴						
Переход ${}^{3}H_{4} \rightarrow J$	Энергия Перехода в см ⁻¹		вычисленные в приближении межконфигураци-					
		эксперимен- тальные [2]	онного взаимодействия					
			Слабого (3)	Промежуточного (4)	Сильного (5)			
${}^{3}F_{3} + {}^{3}F_{4}$	8180	2.12	2.15	2.15	2.13			
${}^{3}H_{6}$	10490	0.20	0.50	0.47	0.42			
${}^{3}P_{0}+{}^{1}D_{2}+{}^{1}G_{4}$	14273	1.61	1.50	1.47	1.36			
${}^{3}P_{1}$	16530	0.38	0.56	0.45	0.41			
${}^{1}I_{6}$	19210	1.13	1.06	1.11	1.30			
${}^{3}P_{2}$	21340	0.51	0.14	0.32	0.45			
Параметры								
$\Omega_2 ({ m B} 10^{-18} { m cm}^2)$			2.13	0.36	0.08			
Ω_4 (в 10 ⁻¹⁸ см ²)			1.79	1.53	0.13			
$Ω_6$ (в 10 ⁻¹⁸ см ²)			0.67	2.05	0.19			
$R_2 = R_4 = R_6$			_	0.24	_			
(в 10 ⁴ см)				0.27				
Δ (b cm ⁻¹)			_	_	30830			
$\sigma \times 10^{6}$			0.26	0.20	0.22			

Силы осцилляторов абсорбционных переходов UBr₄ в растворе HBr

В настоящее время простых надежных методов для оценки величины параметров интенсивности не существует. Поэтому при описании экспериментальных результатов эти параметры рассматриваются как варьируемые. В различных приближениях число варьируемых параметров разное и для корректного сравнения точности описания можно воспользоваться среднеквадратичным отклонением

$$\sigma = \left(\sum_{i=1}^{n} \frac{\left[f_{\text{expt}}(i) - f_{\text{calc}}(i)\right]^{2}}{(n-p)}\right)^{1/2},$$
 (6)

где *n* – количество экспериментальных сил осцилляторов, *p* – количество варьируемых параметров.

Таблица 2

Сталы осциалиторов ассороционных переходов тиви. С									
Переход ${}^{3}H_{4} \rightarrow J$	Энергия перехода в см ⁻¹	Силы осцилляторов в 10 ⁻⁴							
		эксперимен- тальные [2]	вычисленные в приближении межконфигураци-						
			онного взаимодействия						
			слабого (3)	промежуточного (4)	сильного (5)				
${}^{3}F_{3}+{}^{3}F_{4}$	8180	2.80	2.86	2.81	2.88				
${}^{3}H_{6}$	10490	1.05	0.85	0.78	0.75				
${}^{3}P_{0}+{}^{1}D_{2}+{}^{1}G_{4}$	14273	2.93	2.82	2.93	2.84				
$^{3}P_{1}$	16530	0.99	1.37	0.99	1.24				
${}^{1}I_{6}$	19210	2.84	2.76	2.86	2.81				
Параметры									
$Ω_2$ (в 10 ⁻¹⁸ см ²)			10.61	4.52	0.06				
$Ω_4$ (в 10 ⁻¹⁸ см ²)			3.75	3.01	0.35				
$Ω_6$ (в 10 ⁻¹⁸ см ²)			-0.41	23.48	0.18				
$R_2 = R_4 = R_6$			_	0.35					
(в 10 ⁴ см)				0.35	_				
$\Delta (B \text{ cm}^{-1})$			_	_	31130				
$\sigma imes 10^{6}$			0.23	0.17	0.24				

Силы осцилляторов абсорбционных переходов ThBr₄:U⁴⁺

Результаты описания экспериментальных значений сил осцилляторов ThBr₄:U⁴⁺ и комплексов UBr₄ в растворе HBr представлены в табл. 1 и 2. В приближении слабого конфигурационного взаимодействия (приближении Джадда-Офельта) для иона U⁴⁺ в кристалле параметр интенсивности Ω_6 получился отрицательным, что противоречит основным положениям теории интенсивностей. В этом же приближении для комплексов UBr₄ в растворе все параметры интенсивности положительные, но вычисленное значение силы осциллятора для перехода ${}^{3}H_{4} \rightarrow {}^{3}P_{2}$ в 4 раза меньше экспериментального. Таким образом, можно сделать вывод, что в приближении Джадда-Офельта экспериментальные силы осцилляторов абсорбционных переходов иона U⁴⁺ описываются неудовлетворительно.

В приближении сильного и промежуточного по силе конфигурационного взаимодействия указанные выше противоречия снимаются. С точки зрения точности описания эти приближения отличаются незначительно. Тем не менее можно утверждать, что приближение сильного конфигурационного взаимодействия более адекватно для описания абсорбционных переходов иона U⁴⁺. Действительно, в приближении сильного конфигурационного взаимодействия энергии возбужденной конфигурации в кристалле ($\Delta = 31130 \text{ см}^{-1}$) и растворе ($\Delta = 30830 \text{ см}^{-1}$) имеют одинаковый порядок и хорошо согласуются с экспериментальным значением $\Delta_{3\kappaсn} = 30000 \text{ см}^{-1}$ [2]. В то же время дополнительный параметр $R_2 = R_4 = R_6 = \alpha$ в кристалле ($\alpha = 0.35 \cdot 10^4 \text{ см}$) значительно отличается от параметра $\alpha = 0.24 \cdot 10^4 \text{ см}$ в растворе и оба они существенно отличаются от оценочного значения ($\alpha \approx \frac{1}{2\Delta} = 0.17 \cdot 10^4 \text{ см}$), полученного на основе

 $\Delta_{
m эксп}$.

Литература

- 1. Brundage R. T., Svatos M. M., Grinbergs R. Transition rates and Judd-Ofelt intensity parameters of tripositive americiumin a fluorozirconate glass // J. Chem. Phys. 1991. Vol. 95, № 11. P. 7933–7937.
- 2. *Auzel F., Hubert S., Delamoye P.* Absolute oscillator strengths of 5f-5f transitions of U⁴⁺ in ThBr₄ and in hydrobromic acid solutions // J.Lumin. 1982. Vol. 26. P. 251–262.
- 3. Judd B.R. Optical Absorption Intensities of Rare-Earth Ions // Phys.Rev. 1962. Vol. 127, № 3. P. 750–761.
- Ofelt G. S. Intensities of crystal spectra of rare-earth ions // J.Chem.Phys. 1962. Vol. 37, № 3. P. 511–520.
- 5. Дунина Е. Б., Корниенко А. А. Описание интенсивностей абсорбционных переходов урана с учетом межконфигурационного взаимодействия // Квантовая электроника: Материалы V Междунар. науч.-техн. конф. Мн.: БГУ, 2004. С. 130.
- 6. Корниенко А. А. Теория спектров редкоземельных ионов в кристаллах Витебск: ВГУ, 2003. 128 с.