электродвигатель на постоянных магнитах, ротор и статор которого развернуты в плоскости. Имеет серьезные преимущества по сравнению с обыкновенными электродвигателями – отсутствие редуктора и шарико-винтовой пары, превосходная динамика, большая скорость перемещения, отсутствие люфтов. Но при модернизации станка может потребовать значительной переделки механической части, потому его использование более целесообразно в новых станках или при серьезной модернизации механики.

Список использованных источников

1. Соколов, М. М. Автоматизированный электропривод общепромышленных механизмов / «ЭНЕРГИЯ» Москва, 1976. – 487 с.

УДК 004.42

МОДЕРНИЗАЦИЯ МЕХАТРОННЫХ И РОБОТОТЕХНИЧЕСКИХ СИСТЕМ – ПРОГРАММИРОВАНИЕ

Белов А.А., доц., Поцикайлик К.С., студ.

Витебский государственный технологический университет, г. Витебск, Республика Беларусь

<u>Реферат.</u> В данной работе рассмотрена программа для программирования станков с ЧПУ.

Ключевые слова: программирование ЧПУ, G-код.

На сегодняшний день золотым стандартом в программировании станков с ЧПУ является G-код. На станок устанавливается система управления, он же контроллер (популярны системы Fanuc и Siemens).

Так как для создания довольно сложных деталей требуется довольно объемный код – было принято решение о выпуске программного обеспечения, позволяющего не только упростить задачу в программировании станка, но и отслеживать в реальном времени прогрессию обработки.

NX от Siemens – это гибкое и мощное интегрированное решение, которое поможет вам быстрее и эффективнее выводить на рынок новые изделия.

NX поддерживает все стадии разработки изделий: от создания концепта и проектирования до изготовления. Этот набор инструментов позволяет согласовать работу в разных дисциплинах, обеспечить целостность данных, сохранить проектный замысел и оптимизировать весь рабочий процесс [1].

Данная программа является одной из лучших для инженерного обеспечения производства. Она позволяет не только работать с моделированием технических (и не только) изделий, но и с автоматизацией производства, а также с программированием станков с ЧПУ.

Рисунок 1 – Контроллер фирмы Siemens

В данный контроллер требуется либо загрузить уже готовую программу на g-коде для нужной нам детали, либо написать ее самим прямо на контроллере.

Рассмотрим некоторые особенности программы Siemens NX.

Для начала, по заданному нам чертежу мы создаем 3Д-модель нашей детали.

Создание 3Д-моделей в Siemens NX происходит аналогичным образом, как и в других программах по созданию чертежей и 3Д-моделей. Поэтому, если имеется навык работы в популярных инженерных программах (прим. Компас, Inventor), то построение моделей в Siemens NX будет аналогичным и интуитивно понятным.

Рисунок 2 – 3Д-модель детали

Создав нужные ЗД-модели, нам нужно перейти к обработке. Создаем обработку, выбираем общие настройки.

Требуется так же добавить в поле обработки нашу заготовку.

Далее нужно создать инструмент. Создадим фрезу для расфрезерования паза.

Так же надо развернуть наши оси координат в соответствии с тем, как они у нас расположены на станке. Для этого двойным нажатием нажимаем на наши координаты (в моем случае G54) и поворачиваем в нужное нам положение.

Теперь можно приступить к созданию операции. В зависимости от выбора нам нужно будет указать входные данные об этой самой операции, чтобы программа поняла, как ей работать.

Во вкладке Подачи и скорости можно настроить нужные нам параметры и скорости. Программа позволяет автоматически посчитать выходные параметры по одному, заданному нами. Поэтому мы зададим частоту вращения шпинделя в 1000, нажмем на значок калькулятора рядом и программа автоматически проставит нам остальные значения.

Основной	Автоматические настр		^	
Tool Aris & CutCom	Задание режимов резана	-	1	4
Подачи и скорости	Crossers carried (mail		21 0000	ER.
Регионы обработки	Поличана им		0.1250	102
Стратегня	Depo any state and		0.1100	~
Соединения	Amonimizer			
- Tol. & Clearance	ЧВ шпинделя			
Контраль сталкновений	🗵 Частота вращения с	илинделя	1000.000	ᆀ
- Tool, Prg & Machine Contr	Дополнительно			12
— Параметры	Destruct			
	Подачи			
	Резания	250.0000	мы/мин т	80
	Ускоренное У			
	Дополнительно У			
	Epiminus V			
	Оптимизировать подачу при генерации			
	Замедления			^
	Расстояние замедления	н	at C	•
· · · · · · · · · · · · · · · · · · ·				
ействия				^
	50 Sa 🏟	5è		₹
росмотр				v

Рисунок 3 – Подачи и скорости

Теперь, нажав на третью кнопку во вкладке Действия, мы запустим проверку. Откроется отдельное окно, в котором можно запустить симуляцию в реальном времени работы фрезы по заданной программой траектории. Во вкладке 3Д-динамика, выбрав скорость и запустив динамику, мы сможем пронаблюдать работу станка и увидеть, верна ли траектория обработки.

Рисунок 4 – 3Д-визуализация

Если нас все устраивает, нажимаем Ок и переходим к следующей операции.

Когда все операции созданы, выделяем в окне Геометрии нашу деталь, в которую вложено все остальное и нажимаем на кнопку Постпроцессировать. В появившемся окне выбираем нужный нам постпроцессор (в моем случае это трехосевой фрезерный). После чего нажимаем ОК. Программа нам выдаст строки готового G-кода, который мы можем сохранить на носитель и после чего отнести и загрузить на станок.

На выходе мы получаем чистый g-код для станка по выбранному постпроцессору (шаблону). Следует так же проверить полученный код на наличие всех функций, нужных при работе станка. Выбор постпроцессора зависит от того, на каком станке работаем и какой вид g-кода он может читать.

Список использованных источников

1. Официальный сайт Siemens NX. – Режим доступа: URL: https://www.plm.automation. siemens.com/global/ru/products/nx/. – Дата обращения: 26.04.2021.

УДК 62-83:004.896

МОДЕРНИЗАЦИЯ МЕХАТРОННЫХ И РОБОТОТЕХНИЧЕСКИХ СИСТЕМ. ВЫБОР ЭЛЕКТРОПРИВОДА

Белов А.А., доц., Радзиховский А.Г., студ.

Витебский государственный технологический университет, г. Витебск, Республика Беларусь

<u>Реферат.</u> В данной работе рассмотрены способы регулирования электропривода.

Ключевые слова: электропривод, виды регулирования электродвигателей.

Модернизация мехатронных систем в основном заключается в регулировании скоростей