МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ Учреждение образования «Витебский государственный технологический университет»

АВТОМАТИЗАЦИЯ КОНСТРУКТОРСКО-ТЕХНОЛОГИЧЕСКОЙ ПОДГОТОВКИ ПРОИЗВОДСТВА

ПОДГОТОВКА УПРАВЛЯЮЩИХ ПРОГРАММ ДЛЯ ТОКАРНОЙ ОБРАБОТКИ НА СТАНКАХ С ЧПУ СРЕДСТВАМИ САМ-СИСТЕМЫ

Методические указания по выполнению лабораторных работ для студентов специальности

1-36 07 02 «Производство изделий на основе трехмерных технологий»

Составители:

А. Л. Климентьев, гъ. .

Рекомендовано к изданию редакционно-издательским оветом УО «ВГТУ», протокол № 2 от 28.02.2020. Se. Standard Charles and Charl

Автоматизация конструкторско-технологической подготовки Подготовка управляющих программ ДЛЯ производства. токарной обработки на станках с ЧПУ средствами САМ-системы: методические указания по выполнению лабораторных работ / сост. А. Л. Климентьев, А. М. Гусаров, Д. Г. Латушкин. – Витебск : УО «ВГТУ», 2020. – 51 с.

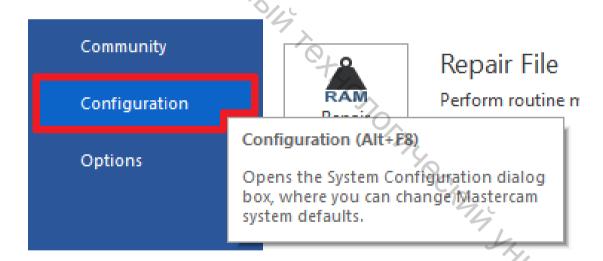
Методические указания являются руководством по выполнению лабораторных работ по подготовке управляющих программ для токарной обработки на станках с ЧПУ по учебной дисциплине «Автоматизация конструкторско-технологической подготовки производства». Изложены общие правила и последовательность проектирования операций, содержание и методика выполнения работ, а также варианты индивидуальных заданий. Предназначены для студентов специальности 1-36 07 02 «Производство изделий на основе трехмерных технологий».

УДК 621.9

СОДЕРЖАНИЕ

1 ОБЩИЕ НАСТРОЙКИ	4
1.1 Установка стандартной метрической системы измерения	4
1.2 Импорт модели детали	
1.3 Подключение файла описания станка	
1.4 Переименование станочной группы	
1.5 Токарная система координат	
1.6 Расположение системы координат	
1.7 Создание 2D-геометрии	
1.8 Настройка заготовки в главном шпинделе	12
1.9 Определение геометрии кулачков	
2 ОБРАБОТКА ТОРЦА, ЧЕРНОВАЯ И ЧИСТОВАЯ НАРУЖНАЯ	
ОБРАБОТКА, НАРУЖНЫЕ КАНАВКИ, ВЕРИФИКАЦИЯ ТРАЕКТОРИ	І Й 19
2.1 Обработка торца	19
2.2 Черновая наружная обработка	20
2.3 Чистовая обработка	26
2.4 Hanvaculia rangeru	28
2.5 Верификация траекторий	33
2 CO2ΠΛΗΜΕ ΗΟΡΟЙ ΓΡΥΠΠΕΚΤΡΛΕΚΤΟΡΙΙЙ ΠΕΡΕΡΟΡΟΤ	
ЗАГОТОВКИ И ПОСЛЕДУЮЩАЯ ОБРАБОТКА	36
3.1 Создание группы траекторий	36
3.2 Переворот заготовки	37
3.3 Верификация с дополнительными параметрами	42
4 ПРАВКА НУМЕРАЦИИ ИНСТРУМЕНТА, ВЫВОД УПРАВЛЯЮЩЕ	Й
ПРОГРАММЫ (ПОСТПРОЦЕССИНГ)	44
4.1 Правка нумерации инструмента	44
4.2 Постпроцессинг	45
ВАРИАНТЫ ЗАДАНИЙ	47
ЗАГОТОВКИ И ПОСЛЕДУЮЩАЯ ОБРАБОТКА 3.1 Создание группы траекторий 3.2 Переворот заготовки 3.3 Верификация с дополнительными параметрами 4 ПРАВКА НУМЕРАЦИИ ИНСТРУМЕНТА, ВЫВОД УПРАВЛЯЮЩЕ ПРОГРАММЫ (ПОСТПРОЦЕССИНГ) 4.1 Правка нумерации инструмента 4.2 Постпроцессинг ВАРИАНТЫ ЗАДАНИЙ	

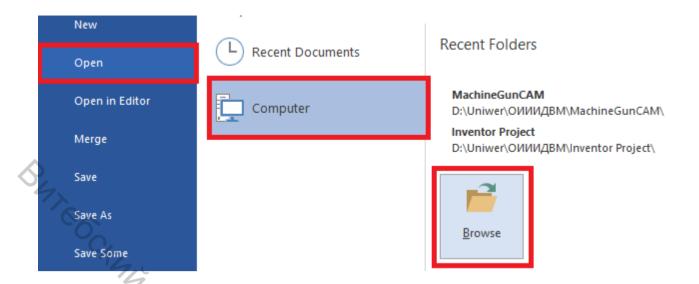
1 ОБЩИЕ НАСТРОЙКИ

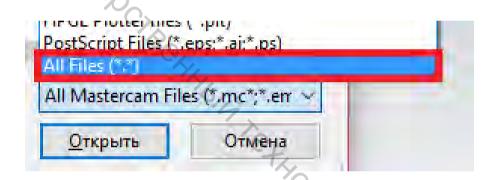

Разработке операций механической обработки с помощью программного обеспечения предшествует подготовка Mastercam и подготовка геометрии детали. Также необходимо настроить описание станка и определить геометрию заготовки.

1.1 Установка стандартной метрической системы измерения

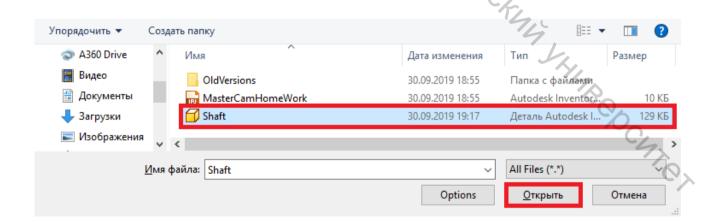
- 1.1.1 Открыть Mastercam.
- 1.1.2 В строке меню выбрать вкладку «File».

1.1.3 Выбрать «Configuration» (<Alt>+<F8>), чтобы открыть диалоговое окно Конфигурация системы.

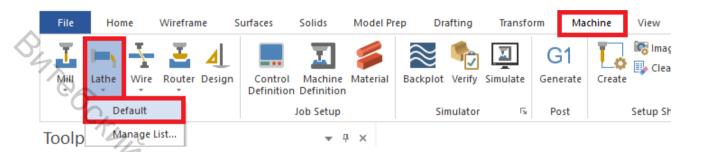

1.1.4 Выбрать «...\mcamxm.config <Metric>» из выпадающего списка «Сиггент» (Текущий).


1.1.5 Нажать <OK>.

1.2 Импорт модели детали


1.2.1 В меню выбрать «File» \rightarrow «Open» (<Ctrl>+<O>) \rightarrow «Computer» \rightarrow «Browse».

1.2.2 В открывшемся окне выбрать «All Files (*.*)» в выпадающем меню справа внизу, чтобы отобразить все имеющиеся файлы в папке.


1.2.3 Выбрать необходимый файл в папке с моделью детали и нажать «*Открыть*».

1.2.4 Сохранить деталь, нажав на значок «Save As» (Сохранить как) (<Ctrl>+<Shift>+<S>), выбрав имя и путь к файлу.

1.3 Подключение файла описания станка

На вкладке «Machine» (Станок) выбирается тип станка «Lathe» (Токарный). Из выпадающего списка выбирается значение «Default» (По умолчанию).

В списке представлены все доступные файлы описания станка. В данном случае предполагается использование станка по умолчанию. При программировании реальных деталей необходимо выбирать из списка станок, на котором планируется осуществлять обработку.

1.4 Переименование станочной группы

В дереве станочной группы расположены настройки технологических параметров для выбора станка. Например, если для обработки детали применяются токарные и фрезерные на разных станках, то для второго типа оборудования можно создать дополнительную станочную группу. Каждая станочная группа имеет индивидуальные настройки технологических параметров, инструмента и траектории обработки. При постпроцессировании каждой станочной группе будет соответствовать отдельный текстовый файл управляющей программы.

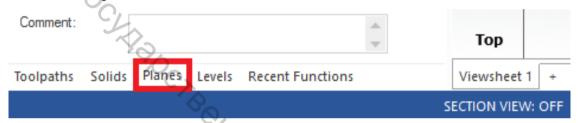
Количество станочных групп системой не ограничивается.

Для переименования станочной группы необходимо:

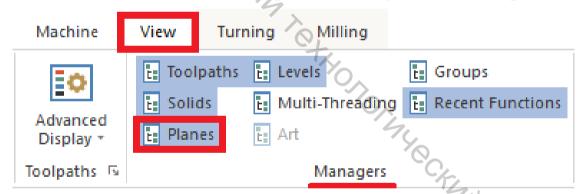
• Нажать правой кнопкой мыши на заголовке станочной группы, затем выбрать «Groups» ($\Gamma pynnы$) \rightarrow «Rename» ($\Pi epeumenoвamb$).

• Ввести новое имя станочной группы.

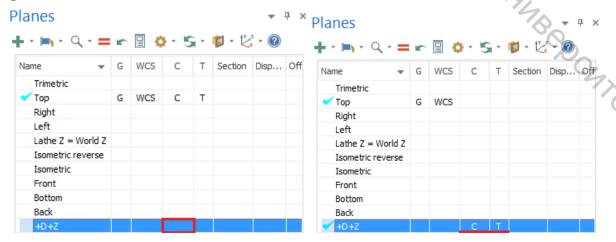
Имя станочной группы может быть произвольным, однако рекомендуется вводить имя, логически связанное со станком и выполняемыми операциями.

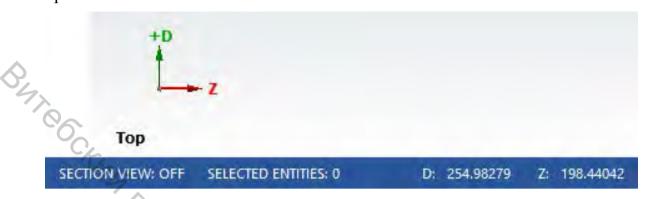

• Сохранить файл.

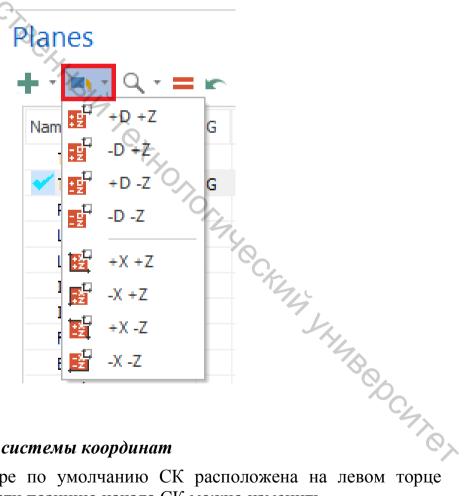
1.5 Токарная система координат


В Маstercam реализована возможность работы со специальным токарным конструкционным планом в радиальных или диаметральных координатах. Система координат (СК) при токарной обработке отличается от СК фрезерного станка. В отличие от трёхмерной СК X, Y, Z при токарной обработке двумерная с осью Z, ориентированной коллинеарно оси вращения детали.

Последовательность установки токарной СК.

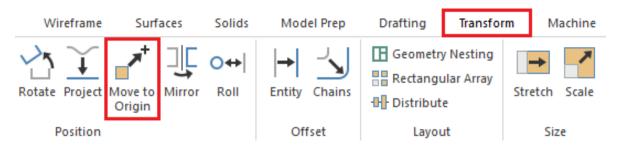

• На функциональной панели выбрать вкладку «*Planes*» (*Планы*) для вызова *Менеджера планов*.


Если вкладка Π ланы отсутствует, включить её отображение можно на вкладке «View» ($Bu\partial$) ленты команд в разделе «Mangers» (Mened) жеры).

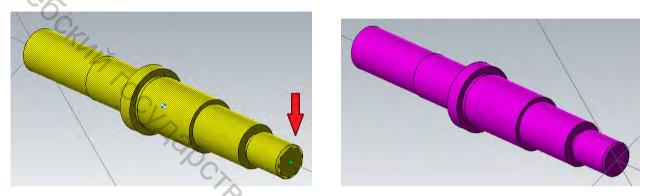

• Кликнуть в колонке C строки «+D +Z» для работы в диаметральных координатах.

Индикаторы в информационной панели обновятся, отображая новые настройки. Интерактивный индикатор глобальной системы координат в левом нижнем углу графической области также изменится в соответствии с настройками.

Для работы в другом квадранте или в радиальных координатах (XZ)необходимо выбрать соответствующую строку в меню «Select lathe plane» (Выбор токарного плана).



1.6 Расположение системы координат


В текущем примере по умолчанию СК расположена на левом торце детали. При необходимости позицию начала СК можно изменить.

Перемещение СК на правый торец.

На вкладке «Transform» выбрать команду «Move to origin».

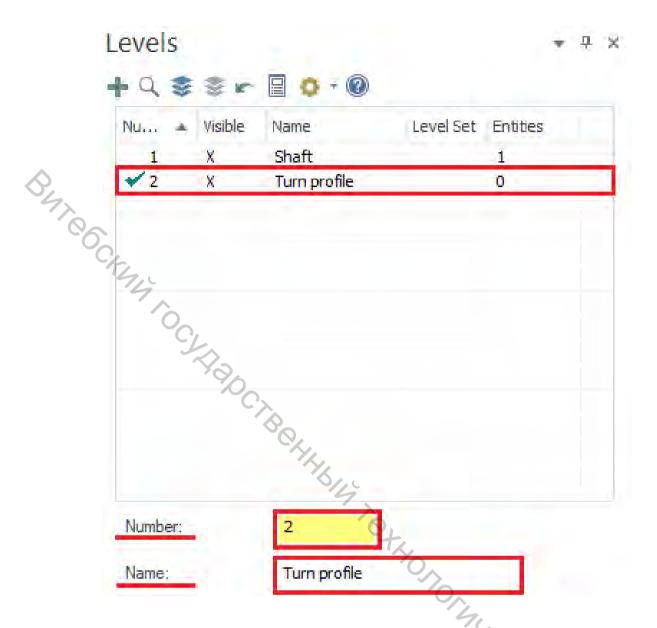
• Выбрать поверхность правого торца так, чтобы на оси окружности появился зеленый крест. В противном случае ось детали не будет соосна одной из осей СК.

Чтобы восстановить исходное цветовое оформление детали, необходимо выбрать команду «Clear colors» (Сброс цветов) в контекстном меню.

1.7 Создание 2Д-геометрии

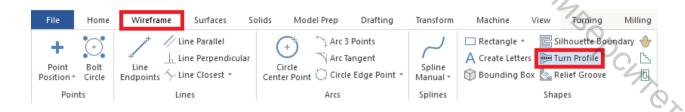
Создание нового слоя для 2D-геометрии.

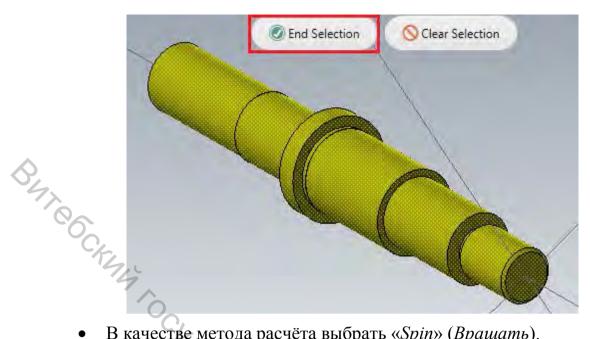
Использование слоев позволяет оптимизировать отображение используемой в проекте геометрии. Располагая объекты на разных слоях, можно управлять их видимостью и возможностью выбора.


Для создания нового слоя:

• На функциональной панели выбрать вкладку «Levels» (Слои), чтобы отобразить Менеджер слоёв.

• Создать новый слой, введя значение 2 в поле «Number» и Turn profile (Токарный профиль) в поле «Name».

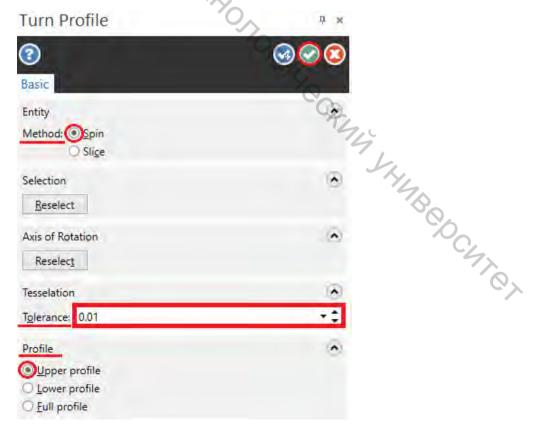

В таблице будет отображен новый слой с нулевым количеством элементов. Зеленая галочка означает, что в данный момент слой назначен главным.


Текущий главный слой также отображается на вкладке «*Ноте*» (*Главная*) в разделе *Слои*.

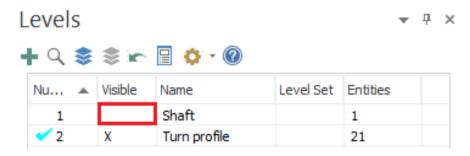
Для создания токарного профиля необходимо:

• На вкладке «Wireframe» (Каркас) выбрать функцию «Turn profile».

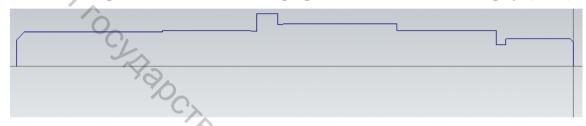
• В соответствии с подсказкой выбрать тело детали. Нажать <Enter> или кнопку « $End\ selection$ » ($3asepuumb\ выбор$).



В качестве метода расчёта выбрать «Spin» (Вращать).

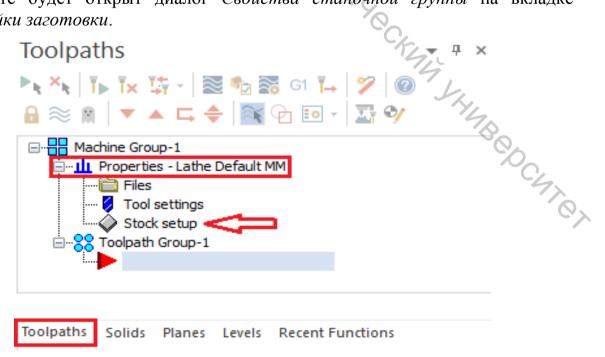

Метод Вращать создает профиль, учитывая геометрию детали во всех продольных сечениях (в результате на расчёт не повлияют лыски, пазы и другая осесимметричная геометрия).

Метод «Slice» (Срез) создает профиль в виде линий пересечения детали с плоскостью ХҮ.

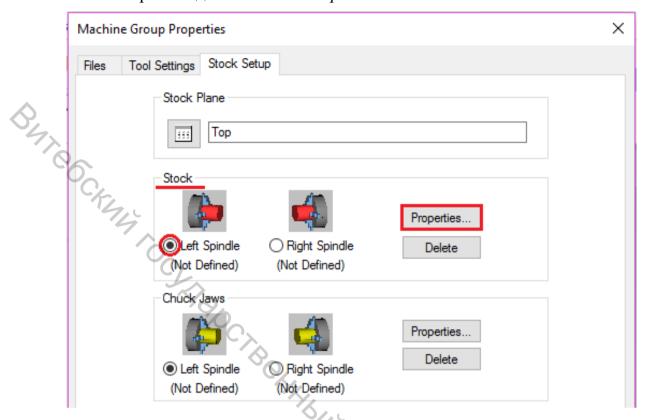

- Установить значение параметра «Tolerance» (Точность) равным $0.01 \, \text{MM}.$
 - Установить значение «Upper profile» (Верхний) в поле Профиль.
 - Нажать <ОК>.

Токарный слой создан. Чтобы отобразить только профиль детали, достаточно скрыть $Cnoй\ I$ в менеджере слоёв. Для этого необходимо убрать галочку в поле «Visible» (Budumый), щёлкнув левой кнопкой мыши по полю.

На иллюстрации ниже показан профиль детали на виде сверху (РСК).

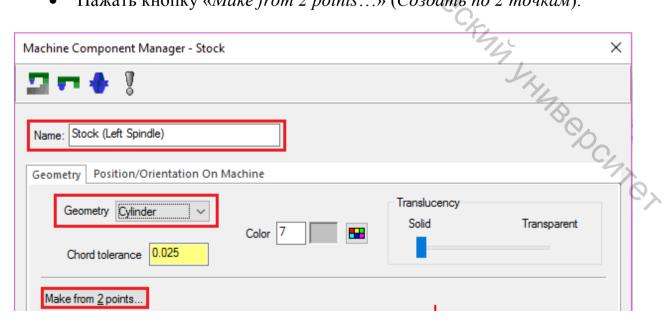


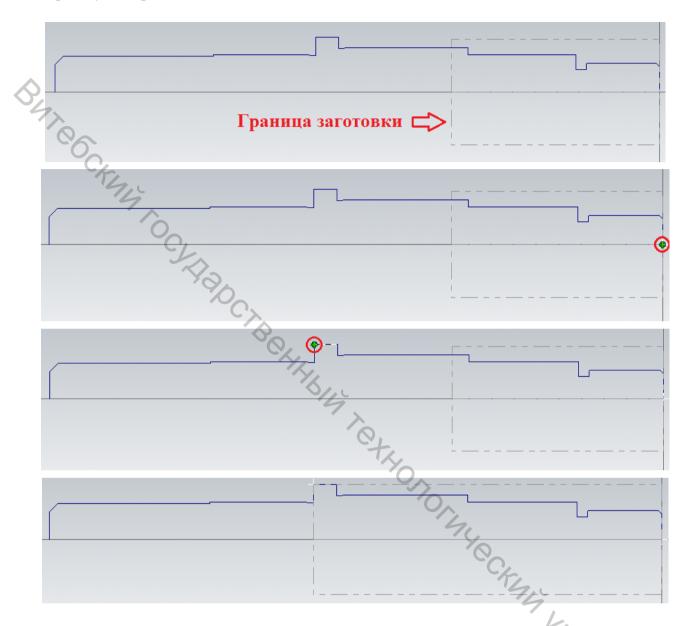
1.8 Настройка заготовки в главном шпинделе


Создание заготовки перед заданием геометрии кулачков облегчает размещение заготовки относительно детали. При создании кулачков можно задать автоматическое их позиционирование относительно заготовок.

Для этого необходимо:

• На функциональной панели выбрать вкладку «Toolpaths» (Траектории), раскрыть дерево «Properties – Lathe Default MM» (Свойства станочной группы) и нажать «Stock setup» (Настройки заготовки). В результате будет открыт диалог Свойства станочной группы на вкладке Настройки заготовки.

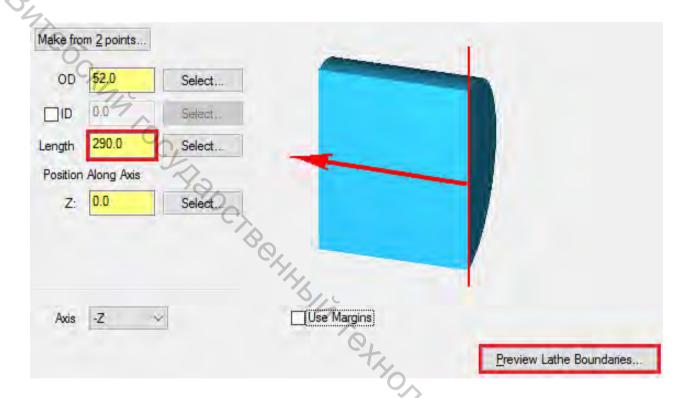

В поле заготовка выбрать «Left spindle» (Левый шпиндель) и нажать свойства. Откроется диалог Менеджер компонентов станка – Заготовка.

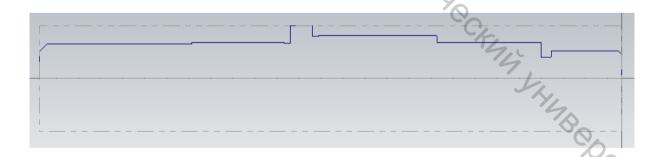

- В поле «*Name*» при необходимости изменить название заготовки.
- В выпадающем меню «Geometry» (Геометрия) выбрать значение «Cylinder» (Цилиндр).

Данный тип заготовки позволит создать цилиндрическую заготовку посредством ввода размеров с клавиатуры или выбора точек в графической области. Такой подход применим для большинства токарных операций.

Нажать кнопку «Make from 2 points...» (Создать по 2 точкам).

 \bullet В графическом окне вначале выбрать ноль CK, а затем точку на поверхности большего из диаметров (габариты заготовки отображаются серой штрихпунктирной линией).

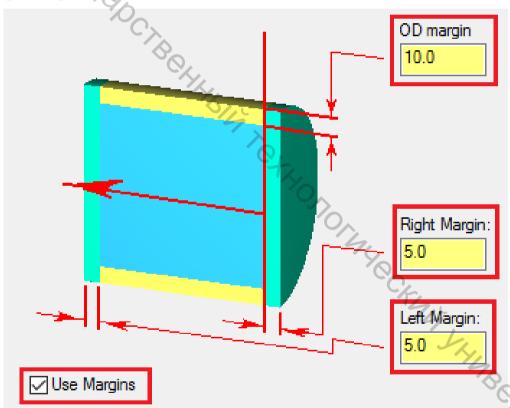

Mastercam рассчитает расстояние между точками, установит значение наружного диаметра «OD» и длины «Length» в соответствующем поле диалога Menedжер компонентов станка — 3аготовка.


• Наружный диаметр заготовки соответствует диаметру детали. Зная длину детали, в соответствующее поле необходимо ввести его значение. Поле для ввода числовых значений поддерживают ввод числа в виде арифметического выражения.

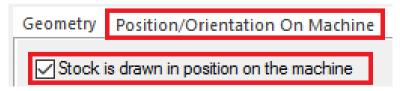
В поле Длина ввести значение, например, «290».

Для предварительного просмотра границ заготовки необходимо нажать «Preview Lathe Boundaries...» (Предварительный просмотр границ).

В графическом окне можно наблюдать следующую картину:


• В поле «Position Along Axis» (Позиция вдоль оси) установить значение параметра Z, равное «0.0», а в поле Ocb установить значение -Z (определяет направление заготовки).

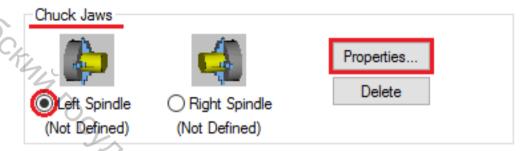
Эти два параметра определяют расположение и направление заготовки. Ноль цилиндрической заготовки размещен в начале координат, а направление цилиндра выбрано вдоль -Z.



• Поставить галочку в поле «*Use Margins*» (*Использовать поля*). В этом режиме можно задать припуски по торцам и диаметрам. Назначить припуск на наружный диаметр (поле «*OD*»), равный, например, 6 мм, припуск на правом и левом торце – 5 мм (поле «*Right Margin*»).

MasterCAM будет учитывать назначенные значения припуском при расчёте траекторий обработки.

• Перейти на вкладку «Position/Orientation On Machine» (Позиция/Ориентация на станке) и убедиться, что активна опция «Stock is drawn in position on the machine» (Заготовка нарисована в позиции на станке).


• Нажать <ОК> для подтверждения ввода настроек заготовки.

Заготовка в левом шпинделе определена.

1.9 Определение геометрии кулачков

На данном этапе предстоит задать геометрию кулачков токарного патрона и настроить их позиционирование. Рассмотренный ниже подход применим лишь в случае, когда уже определены параметры заготовки.

• В поле «Chuck Jaws» (Кулачки) выбрать Левый шпиндель и нажать Свойства.

• В диалоговом окне выбрать вкладку *Параметры*. В разделе *Позиция* поставить галочку в поле «*From stock*» (*Из припуска*) и установить значение параметра «*Grip length*» (*Длина зажима*), например, равным 75 мм.

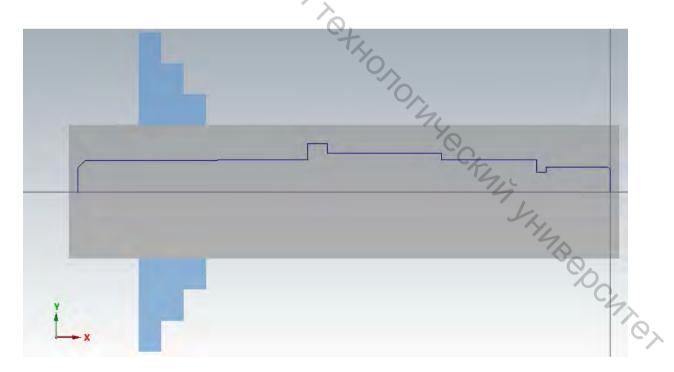
В результате позиция кулачков будет рассчитана, исходя из наружного диаметра заготовки и длины зажима кулачками.

Остальные настройки в диалоге *Менеджер компонентов станка* – *Кулачки* должны соответствовать иллюстрации ниже.

В случае несоответствия настроек в рассматриваемом диалоге внести изменения аналогично иллюстрации выше.

• Нажать <OK> для подтверждения изменений.

На вкладке *Настройки заготовки* теперь указано примечание «*Defined*» (*Определено*) для левого шпинделя и соответствующей ему заготовки.


• Включить опцию «Shade boundaries» (Закрасить границы) для более наглядного отображения границ заготовки и кулачков.

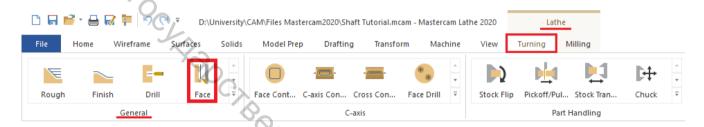
— Пisolay Options

— Industrial of the stock of the st

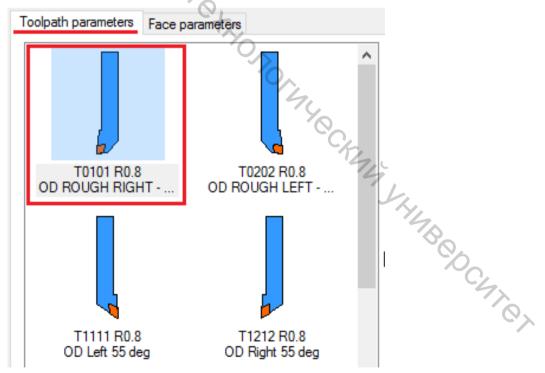
Display Options			
✓ Left stock	✓ Right stock	All	
✓ Left chuck	Right chuck	None	
Tailstock	Steady rest	<u>iv</u> orie	
Shade boundaries			
Fit screen to boundaries			

• Нажать <OK> для выхода из диалогового окна *Свойства станочной группы*.

На данном этапе подготовка детали и настройка основных технологических параметров завершена. Можно приступать к программированию операций обработки.

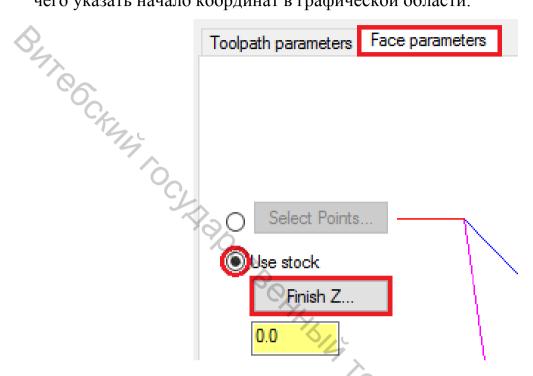

2 ОБРАБОТКА ТОРЦА, ЧЕРНОВАЯ И ЧИСТОВАЯ НАРУЖНАЯ ОБРАБОТКА, НАРУЖНЫЕ КАНАВКИ, ВЕРИФИКАЦИЯ ТРАЕКТОРИЙ

По завершении основных технологических настроек можно приступать к программированию операций обработки.


2.1 Обработка торца

Для обработки торца не требуется выбор геометрии. *Mastercam* создаст траекторию на основании параметров операции обработки торца и настроек геометрии заготовки.

2.1.1 На вкладке *Точение* в разделе «*General*» (*Общее*) выбрать операцию «*Face*» (*Торец*). Откроется диалог *Токарное торцевание*.



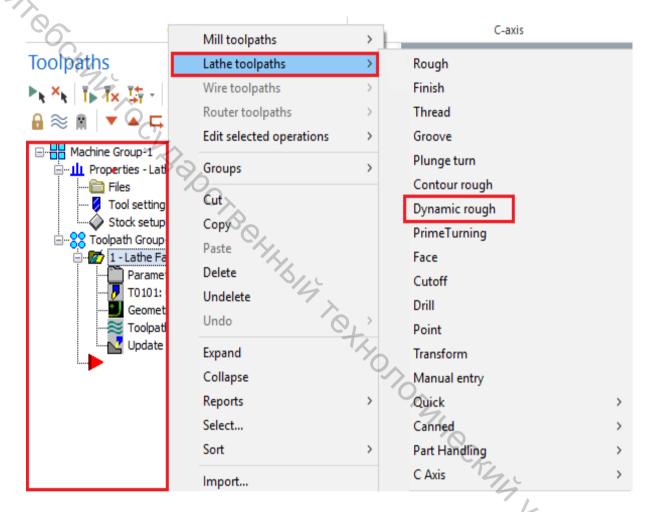
2.1.2 На вкладке *Параметры траектории* выбрать соответствующий инструмент, например, T0101 R0.8 OD ROUGH RIGHT – 80 DEG. Для остальных параметров оставить значения по умолчанию.

В *Mastercam* доступна цветовая индикация ориентации токарного инструмента. Пластина отображается красным цветом, если она ориентирована от наблюдателя, жёлтым – на наблюдателя.

- 2.1.3 Необходимо настроить параметры обработки. Для этого перейти на вкладку *Параметры торцевания* и убедиться, что выбран параметр *Использовать припуск* (данная операция доступна только, если определена геометрия заготовки).
- 2.1.4 Ввести значение 0 или нажать «Finish Z...» (До точки по Z), после чего указать начало координат в графической области.

2.1.5 Для остальных параметров оставить значения по умолчанию и нажать <OK>, чтобы создать траекторию.

Если траектории инструмента задаются в ассоциативной связи с геометрией заготовки, то при её изменении траектории будут автоматически пересчитаны после регенерирования.

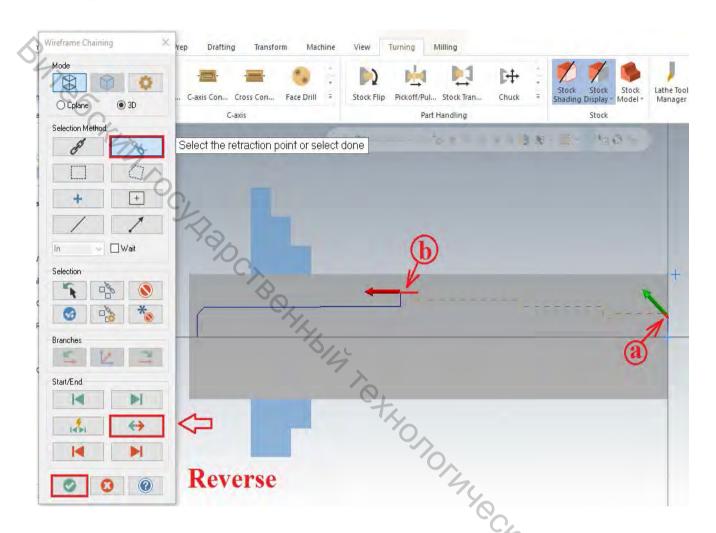

2.2 Черновая наружная обработка

Операция черновой токарной обработки предназначена для удаления большого припуска в целях подготовки детали к чистовым проходам.

В Mastercam реализованы следующие типы черновых траекторий:

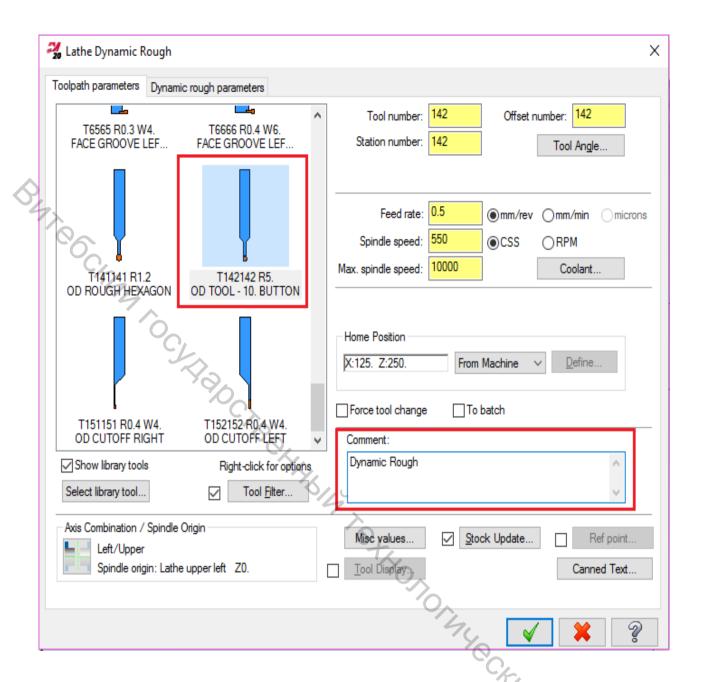
- стандартные черновые траектории, позволяющие использовать весь набор опций черновой обработки, доступные в *Mastercam*;
- циклы черновой обработки используют поддерживаемые станком циклы черновой обработки для уменьшения объёма кода УП;
- циклы контурной черновой обработки черновые проходы, эквидистантные контуру детали;
- динамические черновые траектории проходы с оптимизированной величиной снимаемого припуска, позволяющие эффективно использовать режущие пластины, увеличивать стойкость инструмента и повысить скорость резания;

- контурные черновые траектории данный вид траекторий целесообразно применять в случае, когда заготовка повторяет геометрию детали (например, для обработки отливок).
- В рассматриваемом примере применяются динамические цикловые траектории.
- 2.2.1 В контекстном меню *Менеджера траекторий* кликнуть правой кнопкой мыши в свободной области и выбрать *Lathe toolpaths* \rightarrow *Dynamic Rough* (*Черновая динамическая*).


Также можно на вкладке *Точение* в разделе *Общее* выбрать операцию *Черновая динамическая траектория*.

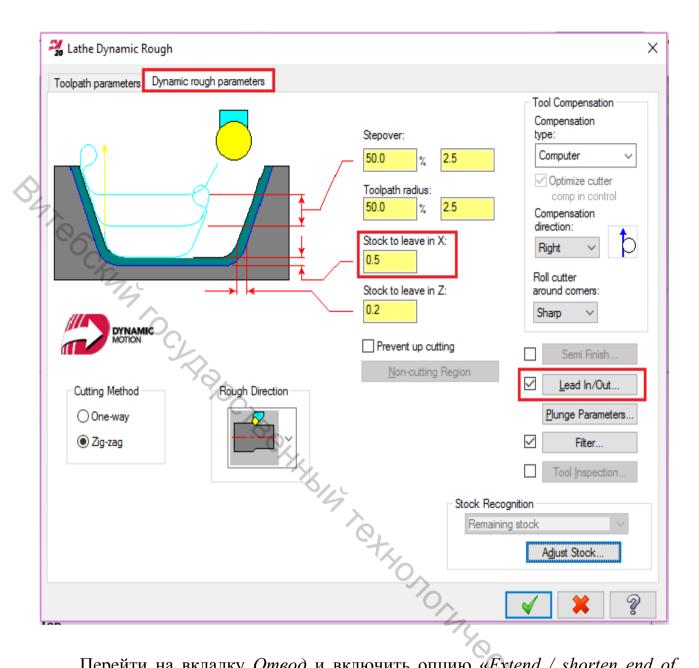
2.2.2 Выбрать последовательно отрезок a, затем отрезок b для выбора цепочки в режиме «Partial» (Yacmuuho). Стрелка должна быть направлена

влево под углом 45° к вертикали, если же она направлена вправо, необходимо нажать кнопку «Reverse» (Реверсирование) в окне, открывшемся при использовании функции Черновая динамическая траектория.

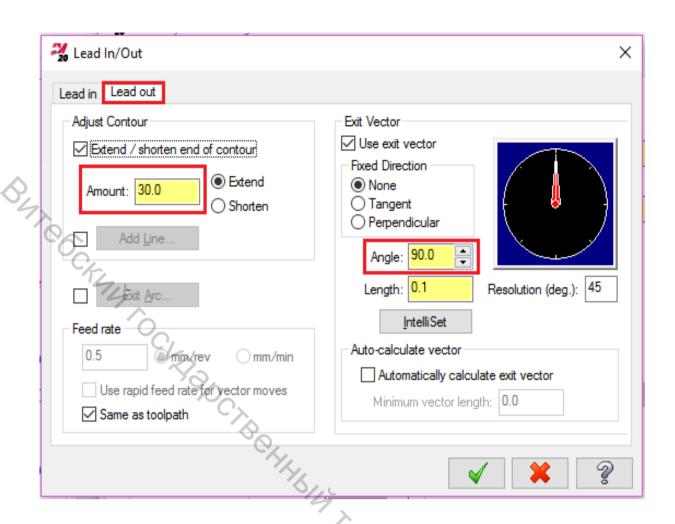

Нажать кнопку <OK> в диалоговом окне подтверждения выбора геометрии.

2.2.3 Как в случае с многими траекториями в *Mastercam*, для программирования черновой обработки необходимо задать геометрию инструмента и параметры обработки.

На вкладке *Параметры траектории* выбрать соответствующий инструмент, например, T142142 R5 OD TOOL – 10. BUTTON. В поле «*Comment»* (*Комментарии*) ввести *Черновая динамическая*.


Комментарий необходим для идентификации операций в *Менеджере траекторий*. Возможен ввод комментария в коде УП при постпроцессинге. Использование комментариев не является обязательным.

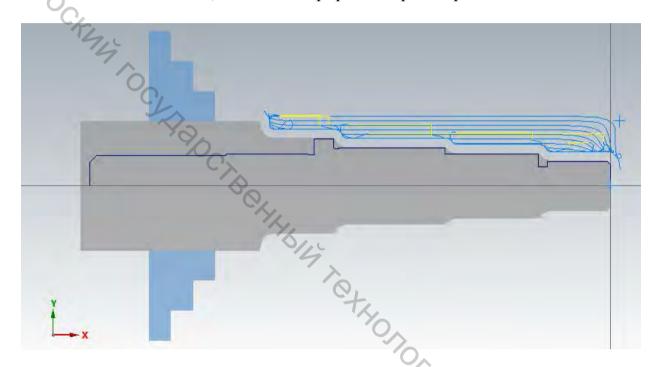
2.2.4 Перейти на вкладку *Черновые динамические параметры* и установить значение *«Stock to leave in X»* (*Остаточный припуск по X*), например, равным 0.5 мм.


Нажать кнопку «Lead in/Out...» ($\Pi o \partial so \partial / Om so \partial$). Откроется соответствующее диалоговое окно.

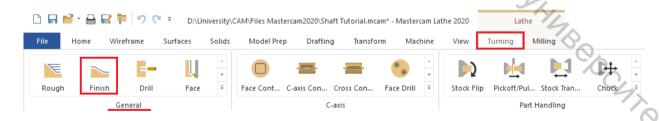
В данном диалоге можно задать параметры подвода и/или отвода инструмента. Благодаря данному функционалу нет необходимости создавать для этих целей дополнительную геометрию, что позволяет увеличить скорость программирования операций, уменьшить трудоёмкость.

Перейти на вкладку *Отвод* и включить опцию «*Extend / shorten end of contour*» (*Продлить / укоротить конец контура*). Продлить контур, например, на 30 мм. В поле «*Angle*» (*Угол*) ввести значение 90° .

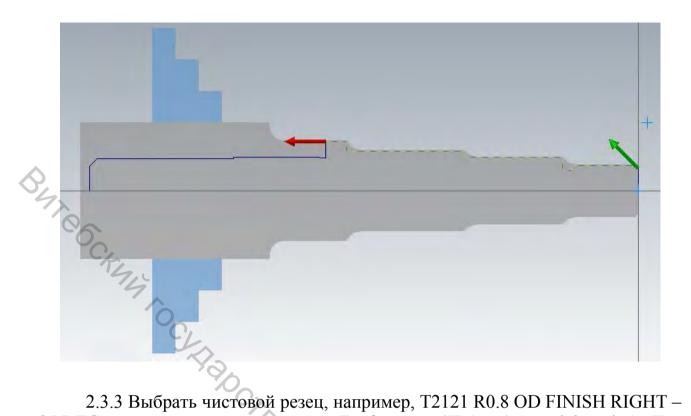
Наборы опций на вкладках Подвод и Отвод идентичны. Функции в данном диалоге направлены на создание оптимальных перемещений при входе и выходе инструмента.


Это угол, под которым инструмент будет отходить от детали в конце каждого прохода.

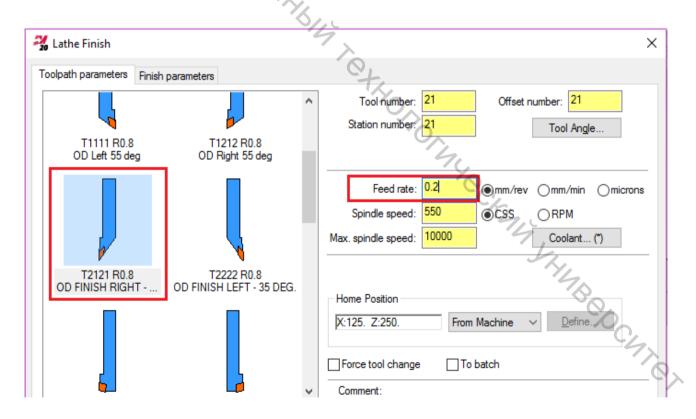
Устанавливать угол вектора подвода или отвода удобно посредством циферблата визуализированного интерактивного co стрелкой. При перемещении стрелки значение угла вводится в соответствующее поле автоматически.


- 2.2.5 Нажать <OK>, чтобы вернуться в диалог *Черновая динамическая*. Для остальных параметров оставить значения по умолчанию.
 - 2.2.6 Нажать <OK>, чтобы сгенерировать траекторию.

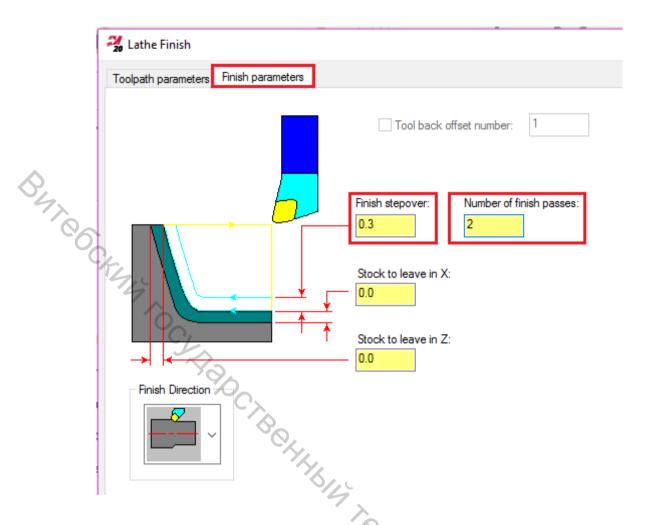
2.3 Чистовая обработка


Чистовая операция позволяет запрограммировать проход инструмента по выбранному контуру.

2.3.1 На вкладке *Точение* выбрать операцию «*Finish*» (*Чистовая*).

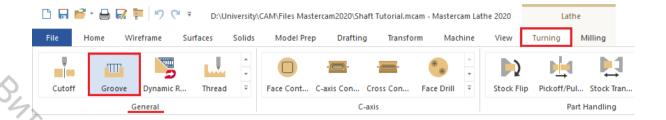


2.3.2 Выбрать геометрию, аналогичную черновой операции.


Порядок ввода параметров чистовой траектории аналогичен другим токарным операциям: сначала необходимо выбрать инструмент и соответствующие параметры, затем – настроить параметры процесса обработки.

2.3.3 Выбрать чистовой резец, например, T2121 R0.8 OD FINISH RIGHT – 35 DEG и уменьшить величину «Feed rate» (Π одача) до 0,2 мм/об. Для остальных параметров оставить значения по умолчанию.

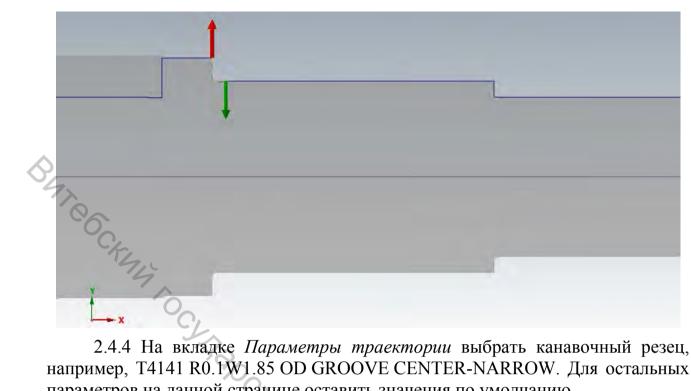
2.3.4 Перейти на вкладку *Чистовые параметры* и установить величину «*Finish stepover*» (*Чистовое врезание*), например, 0.3 мм, а «*Number of finish passes*» (*Количество чистовых проходов*), например, равным 2. Для остальных параметров оставить значения по умолчанию. Нажать <OK>.

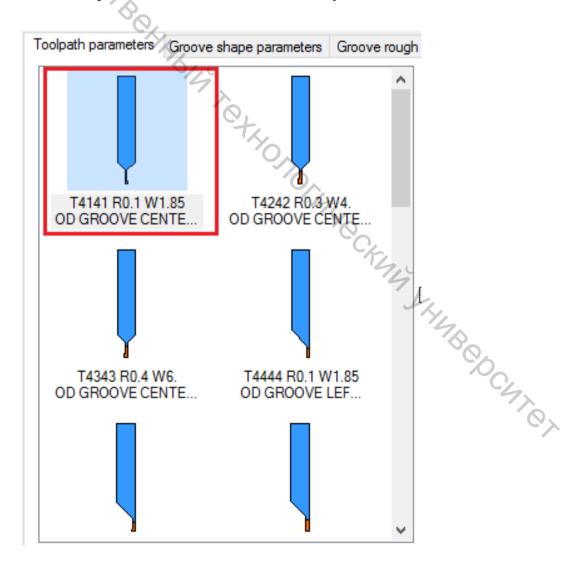

Mastercam создаст чистовую операцию.

обработка с применением обычных черновых и инструмента затруднительна или невозможна. В Mastercam можно запрограммировать обработку нескольких канавок в одной операции, даже если их геометрия не связана.

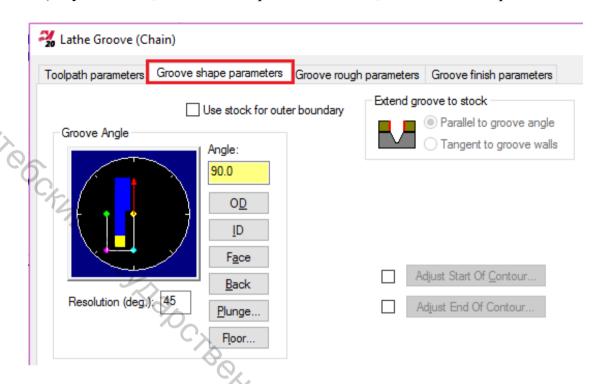
Для обработки двух канавок необходимо выполнить следующее.

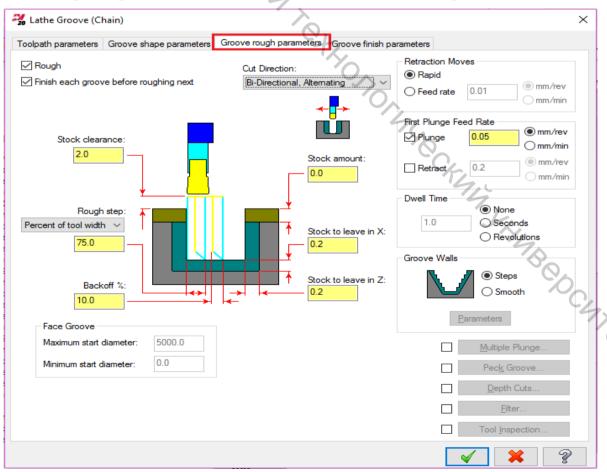
2.4.1 На вкладке *Точение* в разделе *Общее* выбрать операцию «*Groove*» (*Канавка*). Появится диалог *Опции обработки канавки*.

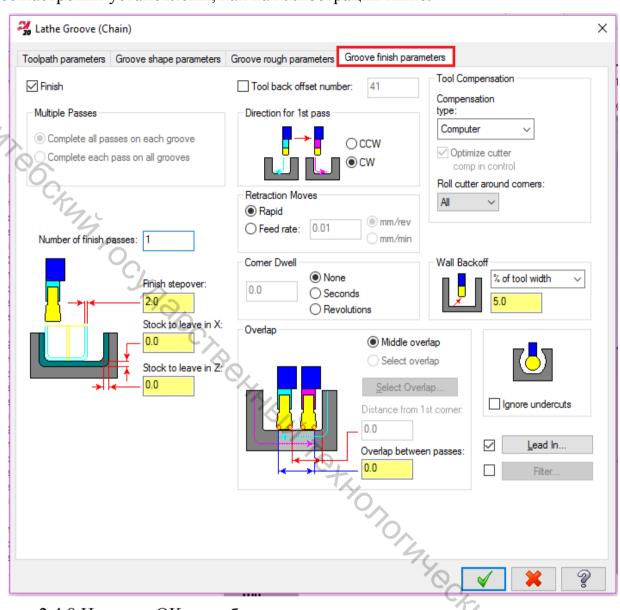

2.4.2 Выбрать опцию «Multiple chains» (Множественные цепочки) и нажать <OK>.

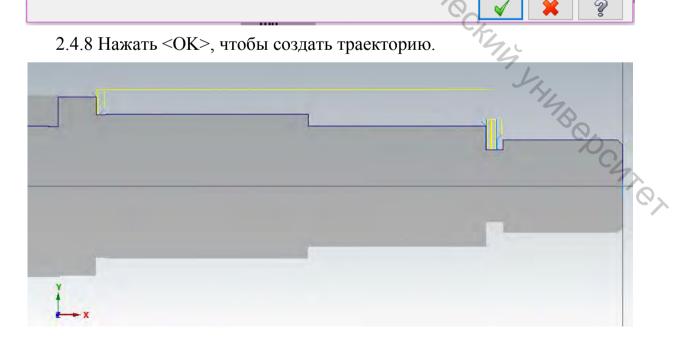

Откроется диалог *Выбор цепочки* и *Mastercam* отобразит текстовую подсказку с предложением выбрать точку входа или цепочку внутренней границы.

2.4.3 Выбрать две канавки, указав поочерёдно первый и последний отрезок цепочки, как показано на иллюстрациях. Нажать <OK>.

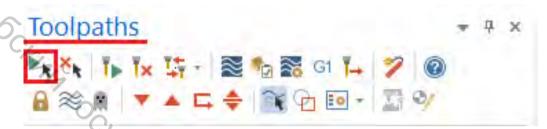



2.4.4 На вкладке Параметры траектории выбрать канавочный резец, например, T4141 R0.1W1.85 OD GROOVE CENTER-NARROW. Для остальных параметров на данной странице оставить значения по умолчанию.


2.4.5 Перейти на вкладку «Groove shape parameters» (Параметры формы канавки) и убедиться, что все настройки сделаны, как на иллюстрации ниже.

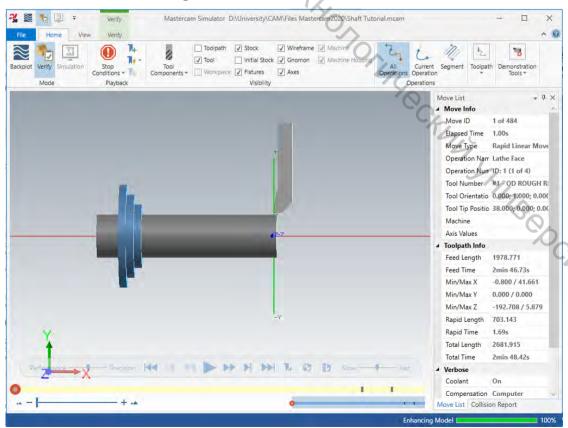

2.4.6 Перейти на вкладку Черновые параметры канавки и убедиться, что значения параметров установлены, как показано на иллюстрации ниже.

2.4.7 Перейти на вкладку Чистовые параметры канавки и убедиться, что все настройки установлены, как на иллюстрации ниже.

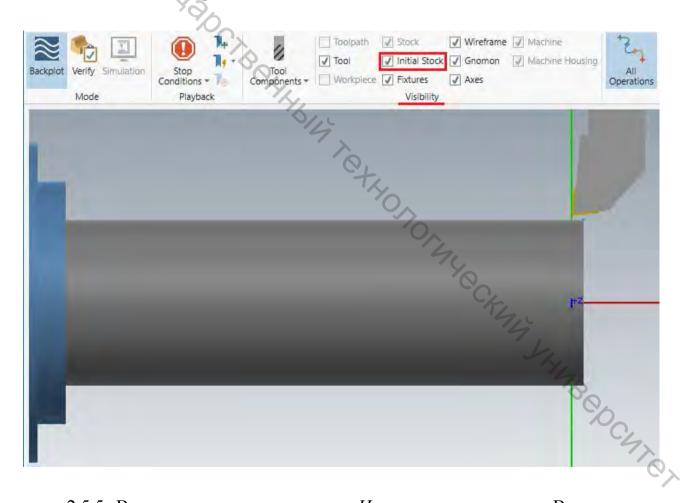

2.4.8 Нажать <ОК>, чтобы создать траекторию.

2.5 Верификация траекторий

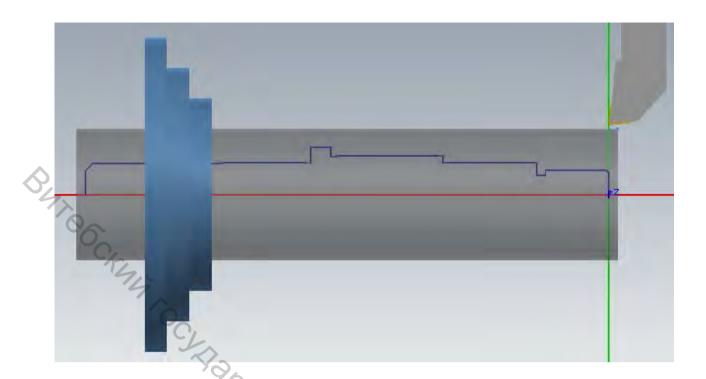
Верификация траекторий (Бэкплот) — это визуализация инструмента по сгенерированным траекториям. Данный функционал позволяет обнаружить ошибки в программе до того, как она будет передана на станок, проверить запрограммированные траектории.


2.5.1 Нажать кнопку «Select all operation» (Выбрать все операции) в Менеджере траекторий для выбора созданных операций обработки торца, черновой и чистовой токарной обработки, точения канавок.


2.5.2 Нажать кнопку «Verify selected operation» (Верификация выбранных операций).

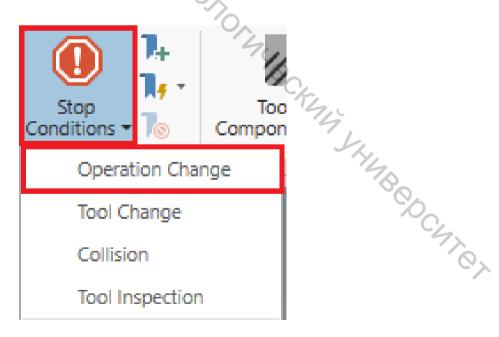

В отдельном окне откроется Mastercam Simulator.

2.5.3 В ленте команд выбрать режим *Backplot*.



Shire Charles B 2.5.4 Включить опцию «Initial Stock» (Начальная заготовка) в разделе «Visibility» (Отображение) на ленте команд для отображения геометрии заготовки до начала обработки.

2.5.5 Вновь кликнуть на опцию Начальная заготовка. В результате геометрия начальной заготовки будет отображаться прозрачной.

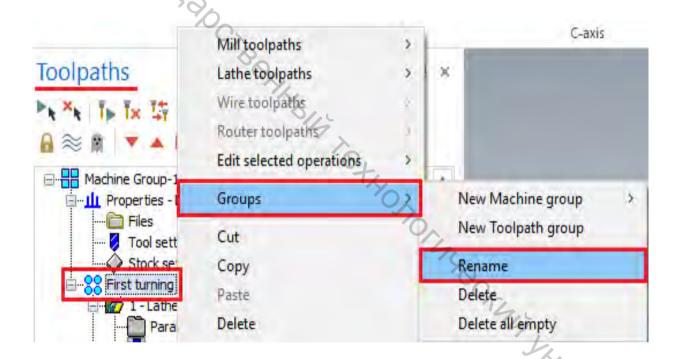

опций в разделе Отображение имеет Каждая ИЗ три режима: отображение включено, режим прозрачности и отображение отключено.

2.5.6 Нажать кнопку «Play» (Запуск) в нижней части окна Mastercam Simulator.

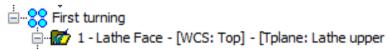
В результате будут в анимированном виде показаны перемещения инструмента с отображением информации по траектории на панели «Move list» (Список перемещений) в правой части экрана.

Чтобы симуляция приостанавливалась по завершении каждой из операций, необходимо включить опцию «Operation Change» (Смена операций) в меню «Stop condition» (Условия останова).

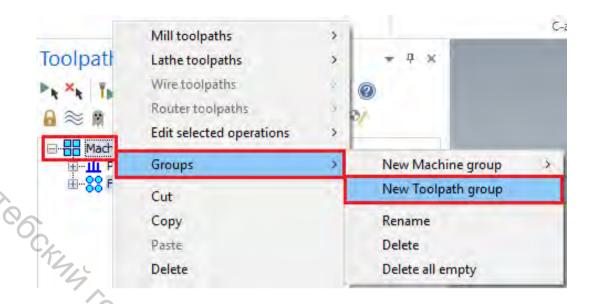
Управлять симуляцией можно с клавиатуры: <R>- запуск/стоп, <S>- шаг вперед, - шаг назад.


3 СОЗДАНИЕ НОВОЙ ГРУППЫ ТРАЕКТОРИЙ, ПЕРЕВОРОТ ЗАГОТОВКИ И ПОСЛЕДУЮЩАЯ ОБРАБОТКА

3.1 Создание группы траекторий


Группы траекторий являются дочерними элементами станочных групп. Они наследуют свойства и настройки вышестоящих элементов. В группах траекторий размещаются операции обработки. Возможность группировать операции полезна для случаев, когда, например, необходим отдельный постпроцессинг нескольких операций. Количество групп траекторий в Mastercam не лимитируется.

Необходимо разделить операции на две группы траекторий, для этого необходимо выполнить следующее.


3.1.1 В Менеджере траекторий щелкнуть правой кнопкой мыши по «Toolpath Group-1» и в контекстном меню выбрать Γ руппы \to Переименовать.

3.1.2 Изменить имя группы Toolpath Group-1 на First turning и нажать DC470x <Enter>.

3.1.3 Создать группу траекторий Second turning, для этого кликнуть правой кнопкой мыши по станочной группе Machine Group-1, выбрать Группы \to Новая группа траекторий в контекстном меню станочной группы. Будет создана новая группа траекторий.

3.1.4 Переименовать новую группу траекторий в Second turning.

3.2 Переворот заготовки

Маstercam позволяет программировать вспомогательные технологические операции – смена позиции заготовки, операции с контршпинделем, задним центром и люнетом. Возможен как вывод в код УП программного останова и комментария для оператора с указанием вручную выполнить манипуляции с заготовкой или оснасткой, так и программирование автоматизированных вспомогательных операций.

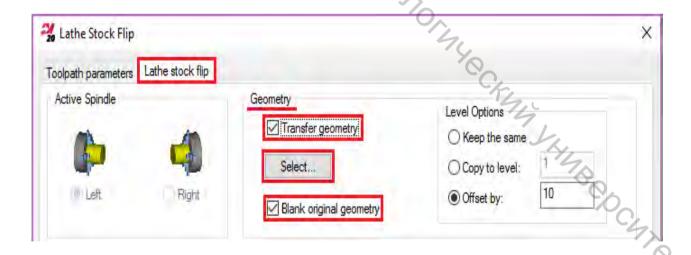
На данный момент *Mastercam Lathe* поддерживает следующие вспомогательные операции:

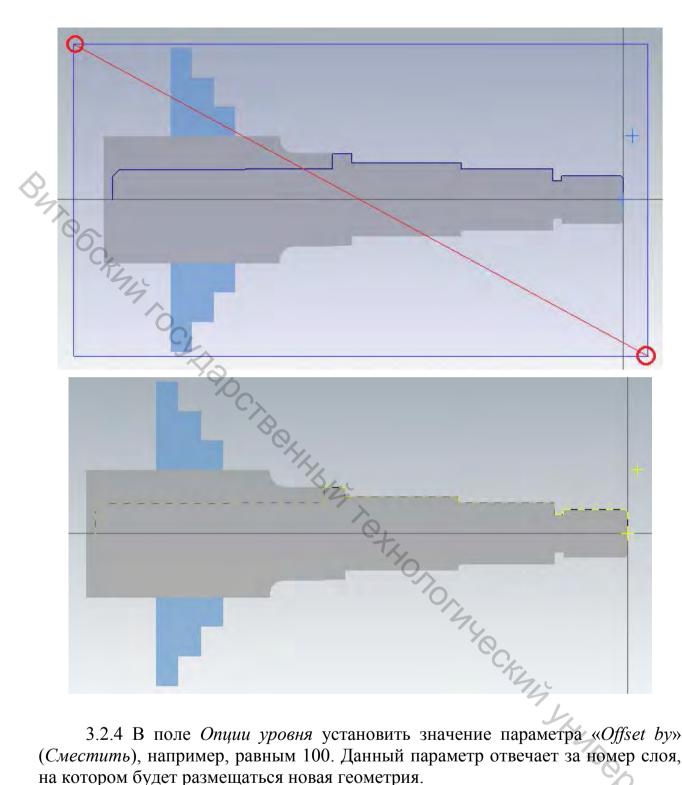
- переворот заготовки (новая позиция в том же шпинделе);
- перенос заготовки (новая позиция в контршпинделе);
- выдвижение заготовки (программирование барфидера);
- планшайба (зажать/разжать/репозиционировать);
- задняя бабка (выдвинуть/убрать);
- перемещение люнета.

Операция *Переворот заготовки* позволяет программировать операции обработки со стороны левого торца детали в том же проекте. Данная операция выводит в код УП комментарий и программный останов для переворота заготовки оператором вручную.

<u>Важно</u>. Программирование вспомогательных технологических операций, таких как переворот заготовки, доступно только в случае, когда данный вид операции поддерживается станком и описан в подключенном файле операции станка.

3.2.1 Для переворота заготовки необходимо выполнить следующее.


На вкладке *Точение* в разделе «*Part Handling*» (*Операции с деталью*) выбрать операцию «*Stock Flip*» (*Переворот заготовки*). Появится соответствующий диалог.


Опции в диалоге *Перевором токарной заготовки* позволяют скопировать геометрию детали, ориентированную в соответствии с новой моделью заготовки, и удалить из текущего вида исходную геометрию.

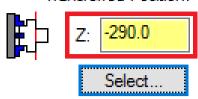
<u>Примечание</u>. *Mastercam* скроет (не удалит) исходные элементы геометрии.

3.2.2 В появившемся диалоге в разделе Геометрия включить опции «Transfer geometry» (Переместить геометрию) и «Blanc original geometry» (Погасить исходную геометрию). Нажать кнопку Выбор.

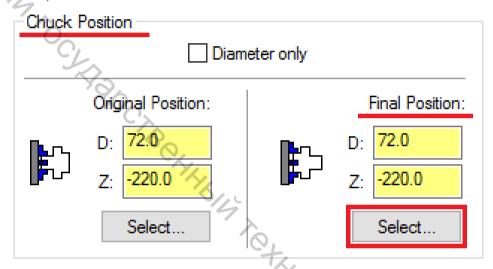
3.2.3 *Mastercam* отобразит графическую область. Выбрать окном все элементы геометрии и нажать <Enter> или кнопку *Завершить выбор*. В результате все элементы будут выбраны.

3.2.4 В поле Опции уровня установить значение параметра «Offset by» (Сместить), например, равным 100. Данный параметр отвечает за номер слоя, на котором будет размещаться новая геометрия.

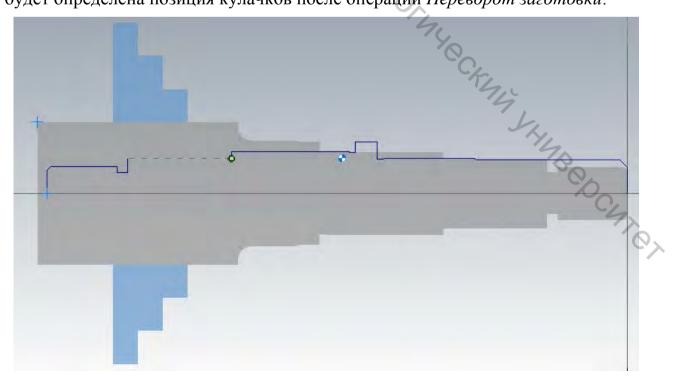
Level Options	
○ Keep the same	
OCopy to level:	1
Offset by:	100


Необходимо задать новое положение заготовки и окончательную позицию кулачков после переворота заготовки.

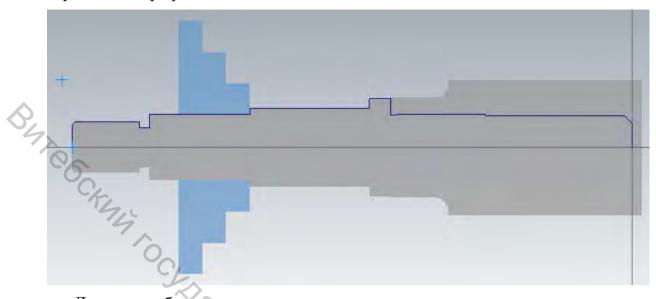
3.2.5 Для позиционирования заготовки нажать на кнопку Выбор в поле Позиция перемещения и выбрать любую точку на левом торце детали.


Как показано на картинке в диалоговом окне, выбранная точка (Z-) после операции переворота заготовки станет точкой Z0.

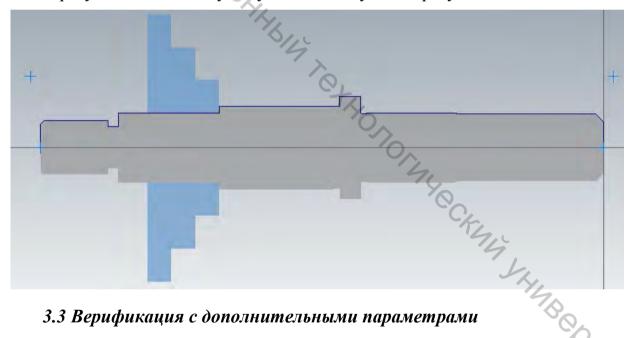
Transferred Position:



<u>Примечание</u>. Точка, выбираемая в качестве позиции перемещения, не обязательно должна находиться на торце детали. Можно выбрать точку, соответствующую требуемому положению ноля детали.

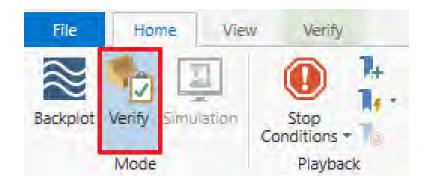

3.2.6 Для выбора позиции кулачков нажать кнопку *Выбор* в поле *Конечная позиция*.

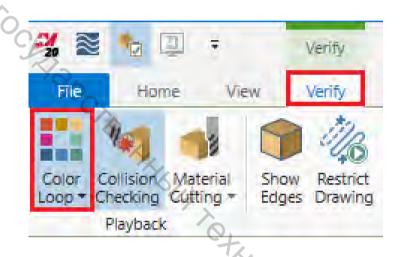
3.2.7 Выбрать точку, как показано на иллюстрации ниже. В результате будет определена позиция кулачков после операции *Переворот заготовки*.



3.2.8 Нажать <OK>, чтобы создать операцию. Заготовка и кулачки будут отображены в графической области в новой позиции.

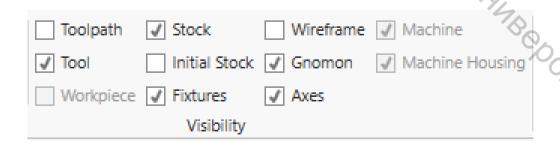
Далее необходимо создать траектории подрезания торца, черновой чистовой динамической и токарной обработки, точения канавки ДЛЯ необработанной части детали, используя алгоритмы, описанные выше.


В результате можно будет увидеть следующий результат.


3.3 Верификация с дополнительными параметрами

После создания всех траекторий целесообразно проверить правильность. Для этого необходимо выполнить следующее.

- 3.3.1 Нажать кнопку Выбрать все операции в Менеджере траекторий для выбора созданных операций.
- 3.3.2 Нажать кнопку Верификация выбранных операций, после чего будет открыто окно Mastercam Simulator.
 - 3.3.3 В ленте команд выбрать Верификация.



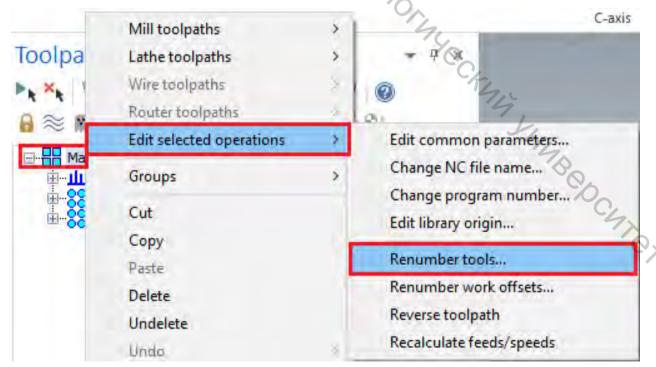
3.3.4 На вкладке Верификация включить опцию «Color loop» (Цветовая петля), что позволит включить цветовую индикацию обработанных на разных операциях поверхностей.

Операции также будут выделены цветом и на шкале времени симулятора.

3.3.5 Установить настройки на вкладке *Видимость* как на иллюстрации ниже.

3.3.6 Нажать кнопку Запуск и проверить правильность обработки детали.

4 ПРАВКА НУМЕРАЦИИ ИНСТРУМЕНТА, ВЫВОД УПРАВЛЯЮЩЕЙ ПРОГРАММЫ (ПОСТПРОЦЕССИНГ)


Постироцессирование — это операция, в ходе которой созданные в *Mastercam* траектории инструмента преобразовываются в код управляющей программы, читаемый СЧПУ станка. За данную операцию отвечает специальный файл постпроцессора, в котором описаны алгоритмы расчёта, синтаксис УП и т. д.

Нумерация инструмента, которая используется при выводе программного кода, соответствует нумерации, задаваемой на вкладке *Параметры траектории* или *Инструмент* в процессе программирования операций обработки. При выборе инструмента из библиотеки *Mastercam* назначает для номера инструмента и корректора значения по умолчанию (зависят от настроек свойств станочной группы). В СЧПУ станка могут иметь место ограничения по диапазону номеров инструмента или иные особенности нумерации. По этой причине, а также для удобства пользователя в *Mastercam*, имеется возможность изменить нумерацию инструмента.

4.1 Правка нумерации инструмента

Необходимо изменить нумерацию инструмента для каждой операции. Для этого необходимо выполнить следующее.

- 4.1.1 Выбрать все операции в Менеджере траекторий.
- 4.1.2 Кликнуть правой кнопкой по *Станочной группе*, выбрать *Редактирование выбранных операций* \rightarrow *«Renumber tools...»* (Перенумерация инструмента).

Откроется окно Ренумерация инструмента.

4.1.3 Отключить опцию «Also renumber tools not used in any operation» (Перенумерация не использующегося инструмента).

	Renumber tools		×						
DATE OCKAL	Tools will be renumbered relative order of your operation	Tools will be renumbered relative to the current order of your operations.							
CK4/	Starting tool number	1							
	Tool number increment								
	Length offset value to be added to tool number)							
	Diameter offset value to be added to tool number)							
	Renumber station number to to	Renumber station number to tool number							
	Also renumber tools not used in	Also renumber tools not used in any operation							

4.1.4 Нажать <OK>. В результате нумерация инструментов в *Менеджере траекторий* будет изменена в соответствии с последовательностью операций.

Данную процедуру целесообразно использовать после создания всех траекторий. Для последовательной нумерации инструмента в процессе созданий операций необходимо воспользоваться соответствующими опциями на вкладке *Настройки инструмента* в диалоге *Свойства станочной группы*.

4.2 Постпроцессинг

Чтобы выполнить постпроцессинг операций, необходимо выполнить следующее.

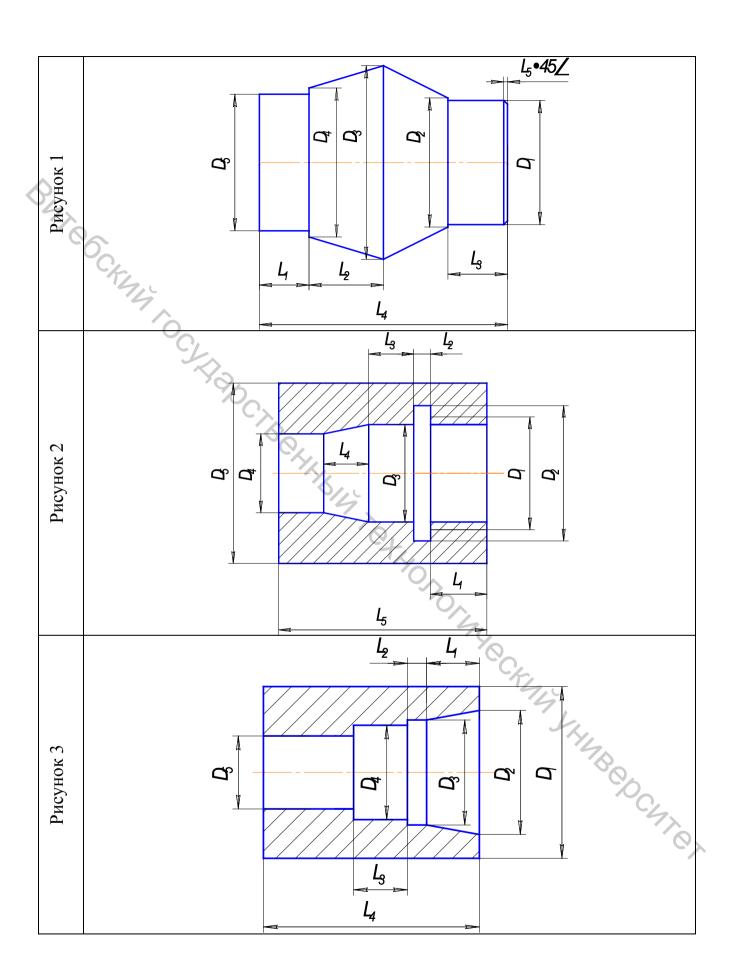
- 4.2.1 Выбрать все операции в Менеджере траекторий.
- 4.2.2 Нажать кнопку «Post selected operation» (Постпроцессирование выбранных операций).

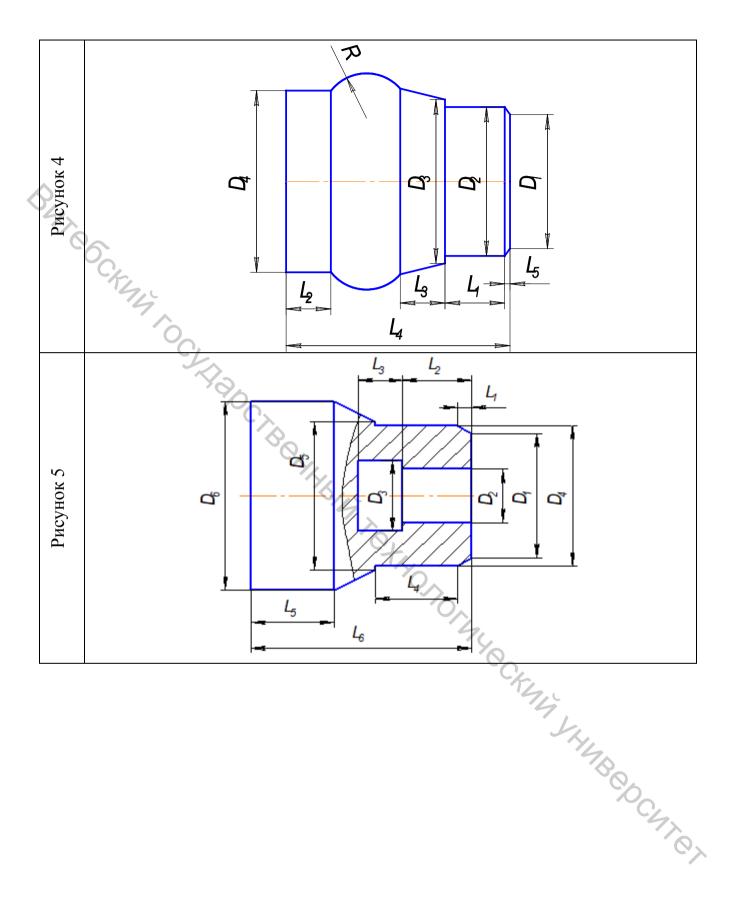
Если выбраны не все операции в проекте, *Mastercam* выведет на экран соответствующее предупреждение и предложит осуществить постпроцессинг всех операций.

Появится диалог *Постпроцессинг*. Опции в данном диалоге позволяют настроить параметры файла, в котором будет записана управляющая программа.

4.2.3 Нажать <OK>.

Появится диалог Сохранить как.


4.2.4 Есть возможность переименовать файл или оставить имя по умолчанию.


В результате будет сгенерирован файл УП. Необходимо обязательно проверить корректность выведенного кода перед тем, как отправить его на станок.

ВАРИАНТЫ ЗАДАНИЙ

Рисуно	к 1											
Вариант	Материал	D_1	D_2	D_3	D_4	D_5	L_{1}	L_2	L_3	L_4		L_5
1	Сталь 3 пс	42 <i>H</i> 8	45	55	48	46	15	30	30	100		2
2	Сталь 20	40 <i>H</i> 11	50	56	52	50	10	30	50	150		1,5
3	АД	25	25	40	30	25 <i>H</i> 9	15	30	15	80		1
4	БрАЖ9-4	60	64	62 <i>H</i> 11	64 <i>H</i> 11	50	50	20	80	200		2,5
5	Сталь 45	50	52	52	45	40	30	30	30	120		1,5
6	Медь М3	42	50	55	55	48	80	100	45	300		1
7	Сталь 40Х	80	82	86	75	70 <i>H</i> 10	10	30	20	85		1,6
8	БрАМц9-2	30	38	50	48	48	100	10	15	175		2
9	Сталь 30	45	45	36	30	24	15	34	15	90		0,5
10	Латунь Л63	55	55	50	50	48	25	55	25	135		2,5
Рисуно	к 2	700	>									
Вариант	Материал	$D_{\scriptscriptstyle 1}$	D_2	D_3	D_4	$D_{\scriptscriptstyle 5}$	$L_{\scriptscriptstyle 1}$	L_2	I	$L_3 \mid I$	- -4	L_{5}
11	Медь М2	45 <i>h</i> 8	48	40	32 <i>h</i> 11	60	30	3	_	0 1	5	80
12	Сталь 18ХГТ	M45	50	36	30	85	45	2,5	3	0 1	0	105
13	Сталь 10	36 <i>h</i> 11	40	38	36	60	40	2	8	8 1	0	90
14	Сталь У8А	45	_	38	30 <i>h</i> 9	70	15	5	4	0 2	25	95
15	Сталь ХВГ	M30	36	24	20	65	20	3	1	0 1	0	85
16	AK6	40	44	40	36	50	15	3,5	3	5 1	0	75
17	Сталь 9ХС	65 <i>h</i> 11	68	55	50	80	45	4	4	5 .	3	65
18	Д 16	36	40	34	34	75	40	2	-	_ -		70
19	Медь М1	M25	28	20	16	55	20	2,5	2	.0	8	100
20	Сталь 65Г	34 <i>h</i> 10	40	36	30	60	60 27		3 20		25	125
Рисуно	к 3			·				4	-			
Вариант	Материал	D_1	D_2	D_3	D_4	D_5	L_1	L_2		L_3		L_4
21	Сталь 40Х	45	40	30	28 <i>h</i> 9	20	-		3		\dagger	55
22	Сталь 18ХГТ	55	45	38	36	32	10		10		2	70
23	Сталь ШХ15	30	28	26	20	18 <i>h</i> 11	1		5	30		60
24	Медь М2	60	45	50	45	40	15	15		15		65
25	Сталь 65Г	75	65	60	48	42	30		10	20		80
26	Медь М3	80	60	60	65	55 <i>h</i> 10	15		15	5		95
27	Латунь Л63	40	34	26	26	22	5		10	10		64
28	Д 16	65	40	36	30	26	8		15	25		55
29	Медь М1	35	30	28	28	25 <i>h</i> 12	15		30	30		100
30	БрАМц9-2	45	40	38	30	26	2	2	20			110

Рисунок			T	- I		ъ Т		-	T -	<u> </u>	-	<u>, 1</u>	
Вариант	Материал	D_1	D_2		O_3	D_4	R	L_1	L_2		-3	L_4	$L_{\scriptscriptstyle 5}$
31	Сталь 40Х	34	36		.0	40	20	10	15		0.	60	2
32	Медь М3	25	30		0	35	30	5	15		5	55	1,5
33	Сталь 20	54	58	_	0	64	40	20	20		.0	80	3
34	АД	30	40	4	-5	55	40	5	25	1	5	75	10
35	БрАЖ9-4	30	35	3	5	45	10	15	15	1	5	50	4
36	Сталь 45	24	32	3	2	38	30	25	10	1	0	45	1,6
37	Ст 3 пс	50	54	5	66	64	35	15	15	2	0.	70	6
38	Сталь 40Х	50	54	5	8	58	15	30	30	1	0	95	15
39	БрАМц9-2	45	55	6	5	70	28	16	10	1	4	65	2,5
40	Сталь ШХ15	36	39	4	-3	42	15	5	15	1	0	45	5
Рисунок	5												
Вариант	Материал	$D_{\rm l}$	D_2	D_3	D_4	D_5	D_6	L_{1}	L_2	L_3	L_4	L_5	L_6
41	Ст 3 пс	43	<u>ک</u> ہ	_	45 <i>h</i> 9	50	55	1,5	_	_	30	40	80
42	Сталь 20	50	30	34	55	55	65	2	40	3	20	35	100
43	АД	-	20	7	32	40	45	-	10	_	15	20	75
44	БрАЖ9-4	54	20	26	56	56	70	5	20	5	40	15	70
45	Сталь 45	48	_	_	60	52	85	10	_	_	18	22	85
46	Медь М3	40	15	_	45	45	65	4	25	_	30	16	90
47	Сталь 40Х	60	25	32	60	62	75	10	25	10	45	20	120
48	БрАМц9-2	50	25	28	35	38	65	20	20	5	80	50	135
49	Сталь ШХ15	_	25	30	48	54	60		10	6	10	40	80
50	Латунь Л63	60		_	65	70	80	20	_		20	20	95
									CAZ	44	145	20	770

АВТОМАТИЗАЦИЯ КОНСТРУКТОРСКО-ТЕХНОЛОГИЧЕСКОЙ ПОДГОТОВКИ ПРОИЗВОДСТВА

ПОДГОТОВКА УПРАВЛЯЮЩИХ ПРОГРАММ ДЛЯ ТОКАРНОЙ ОБРАБОТКИ НА СТАНКАХ С ЧПУ СРЕДСТВАМИ САМ-СИСТЕМЫ

Методические указания по выполнению лабораторных работ

Составители: Климентьев Андрей Леонидович Гусаров Алексей Михайлович

Латушкин Дмитрий Григорьевич

Редактор *Т.А. Осипова* Корректор *Т.А. Осипова* Компьютерная верстка *А.Л. Климентьев*

Подписано к печати <u>13.03.2020.</u> Формат <u>60х90 $^{1}/_{16}$ </u>. Усл. печ. листов <u>3,2.</u> Уч.-изд. листов <u>4,3.</u> Тираж <u>30</u> экз. Заказ № <u>94.</u>

Учреждение образования «Витебский государственный технологический университет» 210038, г. Витебск, Московский пр., 72.

Отпечатано на ризографе учреждения образования «Витебский государственный технологический университет». Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 1/172 от 12 февраля 2014 г. Свидетельство о государственной регистрации издателя, изготовителя, распространителя печатных изданий № 3/1497 от 30 мая 2017 г.