УДК 000.000.00

ВЛИЯНИЕ ТИПА НАГРУЗКИ НА ЭВОЛЮЦИЮ АНИЗОТРОПИИ В УСЛОВИЯХ ПОЛЗУЧЕСТИ

Р. Устинович

Кафедра прикладной механики, Белостоксий политехнический институт 15-351 Белосток, ул. Вейска 45Ц, Польша urobert@cksr.ac.bialystok.pl

В работе представлена опытная идентификация деформационной анизотропии стали (15НМ) в условиях ползучести при температуре 823К. Сделан опытный анализ влияния типа нагрузки на эволюцию коэффициентов анизотропии. Он показывает, что эволюция коэффициентов анизотропии в процессе ползучести существуют в сложном напряженном состоянии и она связана с процессом упрочнения материала.

1. Введение

Анизотропные механические свойства представляют собой очень важные параметры материала в процессах формирования как, например, волочение, протягивание и экструзия [1]. Знание развития анизотропии в материалах, изученность ползучести и других анизотропных процессов очень важны с инженерной точки зрения.

Цель этой работы – идентификация деформационной анизотропии и определение влияния типа нагрузки на анизотропию ползучести. В работе представлена также методика испытаний для получения некоторых механических свойств стали 15НМ.

2. Теория анизотропной ползучести

Имеются два базовых вида анизотропных теорий ползучести. Первая теория представляет уравнения для описания анизотропного твердого тела в исходном, начальном состоянии материала [5]. Вторая характеризует твердое тело, получающее анизотропию во время развития процесса ползучести путем упрочнения [8]. Главное правило ползучести всегда представляется как функция соотношений между тензором скорости ползучести d, тензором напряжений о и параметром времени t:

 $d = F(\sigma, t).$

(1)

Для описания полученных экспериментальных данных использовали квазилинейную теорию анизотропной ползучести [4], которая требует выполнения двух главных условий: несжимаемости стали в пластичном диапазоне и подобия кривых скорости ползучести. Для второго периода ползучести эта теория имеет следующий вид:

$$d = G(\alpha) \Lambda \alpha$$

(2) $a = O(O_{peg}) A O.$ Для первого и третьего периодов ползучести (3) $d(t') = G(\sigma_{\text{peg}}, t') A(t') \sigma,$ где d – тензор скорости ползучести; A(t) – тензор анизотропии; $G(\sigma_{peg}, t)$ – функция нелинейности уравнения; σ_{peg} – эквивалентное напряжение; σ - тензор напряжений; t' – стандартизованный параметр времени t, где $t \in (0,1)$.

Время t', показанное в уравнении (3), описывает процесс ползучести следующим образом: значение нуля (t' = 0) описывает момент, в котором образец получает последний импульс нагрузки, а значение t' = 1 - когда образец разорван. Методика стандартизации времени t' для кривых ползучести показана в работе [5].

3. Программа испытаний

Исследованный материал – низколегированная, малоуглеродистая молибденохромовая сталь (Сг-0.9 %, Мо-0.55 %, Мп-0.5 %, С-0.15 %). Эта сталь широко используется в энергетике и химических индустриях и поэтому представляет собой необходимый материал для изготовления автоклавов, дисков в паровых турбинах и труб, работающих при сложных нагрузках и повышенной температуре [7].

Испытания на ползучесть были сделаны на трубчатых образцах с внешним диаметром, толщиной и длиной 12.0, 0.5 и 50.0 мм, соответственно. Образцы подвергались термообработке (отжиг в течение одного часа при 950К). Перед испытаниями на ползучесть сделаны предварительные исследования стали 15HM при температуре 823К с цельюопределения начальной анизотропии. Предварительные испытания были проведены на стандартной испытательной машине, а эксперименты на ползучесть – на специальной установке. Установка изготовлена так, чтобы вводить осевую нагрузку, кру-

чение и внутреннее давление одновременно. Процессы нагрева до 823К и нагрузки образцов автоматически регулировались и регистрировались средствами программирования компьютера.

Деформация была измерена непосредственно на образце тремя разными, независимыми каналами путем использования 7 индукционных детекторов. Первая группа детекторов измеряла аксиальную деформацию (ε_{11}), вторая измеряла деформацию сдвига ($2\varepsilon_{12}$) и последняя – окружную деформацию (ε_{22}). Данные (электрический сигнал) от трех каналов измерения (удлинения, кручения и внутреннего давления) в процессе ползучести собирались на твердом диске компьютера.

Образцы были нагружены комбинацией нагрузки, составленной из осевой силы, крутящего момента или внутреннего давления. Таким образом, простое и сложное напряженное состояние было получено. Можно описать его путем использования вектора напряженного состояния λ [10], т.е.:

 $\lambda = [\lambda_1, \lambda_2, \lambda_6] = [\sigma_{11}/\sigma_{11}, \sigma_{22}/\sigma_{11}, \sigma_{12}/\sigma_{11}], \qquad (4)$

0.1

где λ_i – компоненты вектора λ ; σ_{11} , σ_{22} – компоненты нормального напряжения; σ_{12} – компонент напряжения сдвига.

Получено три типа нагрузки (плоское напряженное состояние), соответствующие трем значениям вектора напряжения λ:

- 1 тип растягивающая осевая нагрузка с кручением: λ = [1,0, 0.6], [1,0, 0.25];
- 2 тип осевая нагрузка и внутреннее давление: $\lambda = [1, 0.5, 0], [1, 1, 0], [1, 2, 0];$
- 3 тип осевая нагрузка, внутреннее давление и кручение: $\lambda = [1, 1.5, 0.5], [1, 1, 0.01].$

4. Результаты испытаний

AND DESCRIPTION OF THE OWNER OF THE PARTY OF THE STREET OF T

Первые испытания были по определению начальной анизотропии стали в отожженном состоянии. Приблизительно для 36 мини-образцов определены пределы прочности на растяжение (температура 823К) в зависимости от направления вырезания образца из прутка. На основе статистического анализа было обнаружено, что определенные величины прочности на растяжение были подобными для разных направлений к оси прутка. Было зарегистрировано, что с увеличением угла вырезания образца из стержня значения прочности на растяжение увеличиваются приблизительно на 3-5%. Результаты показывают качественное согласование с экспериментом Дитриха и др. [3], связанного с изучением влияния отжига на пластическую анизотропную деформацию в металлах. Эта анизотропия была комплектно редуцированная после второй термообработки.

Несжимаемость стали 15HM в пластической зоне при повышенной температуре, была изучена в соответствии с первым допущением, употребляемым в математической модели. Модули параметра деформации v' (v' = $\varepsilon_{22}/\varepsilon_{11}$), известные как коэффициенты Пуассона, определяющие отношение деформации поперечного сжатия к деформации продольного растяжения, были в диапазоне 0.47-0.48. Эти экспериментальные данные свидетельствует о том, что среда была несжимаемая в пластическом состоянии и фактор Пуассона стремится к величине 0.5.

Необходимо отметить, что подобие кривых ползучести обычно наблюдается и регистрируется в процессах ползучести металлов и сплавов. Второе допущение о подобии кривых скорости ползучести также подтверждалось экспериментом. Если в процессе ползучести будет существовать пропорциональность компонентов тензора напряжений σ_{ij} к компонентам вектора состояния напряжений λ_{ij} , тогда компоненты тензора скорости деформации d_{ij} будут пропорциональными к компонентам вектора состояния деформации χ_{ij} . Это отношение дано уравнением:

$$\sigma_{ij} = \lambda_{ij} \ u \Longrightarrow d_{ij} = \chi_{ij} \ u^{1}, \tag{5}$$

где σ_{ij} – компоненты тензора напряжений; λ_{ij} – компоненты вектора состояния напряже-

ний; d_{ij} – компоненты тензора скорости; χ_{ij} – компоненты вектора состояния деформации; u, u^l – параметры пропорциональности.

Верификация допущения о подобии кривых скорости ползучести была сделана для плоского напряженного состояния для нескольких дискретных значений стандартного время *t*⁺ [9,10]. Полученные из испытаний результаты свидетельствуют о правильности допущения.

4 .1. Определение анизотропии стали 15НМ. Двадцать семь испытаний на ползучесть были проведены при температуре 823К. Диапазон времени до разрыва образца был 5÷1890 часов; диапазон интенсивности напряжения был от 117МПа до 258МПа. Все кривые показывали первичный период ползучести для $t \in (0, 0.04)$, вторичный для $t \in (0.04, 0.3)$ и третий для $t' \in (0.3, 1)$. Короткий отрезок устойчивой ползучести (25% от долговечности образца) и длинный третий период были характерны для этих кривых. Рис. 1 представляет типичную кривую ползучести в зависимости от стандартного параметра времени t'.

Тензор анизотропии А (уравнения 2-3) счита-

ется симметричным. Это свойство дает возможность значительно увеличить (для определения) число факторов анизотропии. Когда устраним некоторые компоненты анизотропии, которые не определены, используем допущение о симметричности тензора и сделаем деление каждого компонента тензора на первый диагональный компонент (A₁₁₁₁), тогда получим возможность вычислить девять независимых компонентов тензора анизотропии. Применение математической трансформации из системы тензорных обозначений к матричной, квадратной системе обозначений позволяет определить с помощью эксперимента 9 коэффициентов анизотропии. Необходимо отметить, что число коэффициентов, которые возможны для определения, было ограничено выбором типа нагрузки для испытания образца. В этом случае матрица анизотропии а_{ра} могла быть написана следующим виде:

$$\begin{bmatrix} 1 & a_{12} & a_{13} & - & - & a_{16} \\ a_{22} & a_{23} & - & - & a_{26} \\ & & a_{33} & - & - & a_{36} \\ & & & - & - & - \\ cumemp & & - & - & - \\ & & & & & a_{66} \end{bmatrix}$$

Характеристики кривых ползучести (до разрыва) были получены из эксперимента. Они служили для определения компонентов тензора скорости деформации для параметров времени t' путем использования метода последовательного приближения и допущения о несжимаемости стали 15HM. Функция нелинейности употреблена в виде уравнения Northon-Bailey [6].

Коэффициенты анизотропии а_р были определены и проанализированы для трех групп нагрузки образцов:

□ 1 группа – нагрузка осевым растяжением и кручением (F+M), □ 2 группа – нагрузка осевым растяжением и внутренним давлением (F+P),

3- A

□ 3 группа – нагрузка осевым растяжением, кручением и внутренним давлением (F+M+P).

4.2 Анализ экспериментальных данных.

Предметом анализа было изменение коэффициентов анизотропии a₁₂, a₂₂, a₁₆, a₆₆, представленное на рис. 2-5.

Коэффициент а₁₆ (рис. 2) очень чувствителен на возникающую анизотропию и позволяет оценивать анизотропные свойства и описывать уровень анизотропии в металле [10].

Рис. 2. Эволюция коэффициента анизотропии а16 для нагрузки образца осевой растяги-

вающей силой с крутящим моментом (F+M) и добавочным внутренним давлением (F+M+P).

Коэффициент a_{16} для третьей группы данных (F+M+P) получает значения, близкие к нулю в начале процесса ползучести (первая стадия); для первой группы (F+M) это явление происходит с опозданием $\Delta t = 0.05$. Это свидетельствует о том, что сталь 15HM для третьей группы данных (F+M+P) в начале процесса ползучести имеет квазиизотропные свойства. Таким образом, изотропный материал интенсивно переходит в анизотропный по причине его упрочнения в первом периоде ползучести. Можно сказать, что для образцов при осевом растяжении и кручении создавались большие приращения значений коэффициента a_{16} в целом процессе, чем для более сложной нагрузки, т. е. при действии осевой силы, крутящего момента и давления. Это могло представлять собой результат существенного участия напряжения сдвига в пространстве всех напряжений или его перераспределения в процессе. Процесс ползучести для третей группы данных был болеестабильным. Значения коэффициента a₆₆ очень отличаются в целом анализированном процессе для первой и третей группы данных (рис. 3).

Рис. 3. Эволюция коэффициента анизотропии а₆₆ для нагрузки образца осевой растягивающей силой с крутящим моментом (F+M) и добавочным внутренним давлением (F+M+P).

Характер изменения коэффициентов a₁₂ и a₂₂ (рис. 4, 5) похож для нагрузки (F+P) и (F+M+P), а значения их не отличаются намного для всех трех стадий ползучести.

Рис. 4. Эволюция коэффициента анизотропии а₁₂ для нагрузки образца осевой растягивающей силой с внутренним давлением (F+P) и добавочным крутящим моментом (F+M+P).

Коэффициент а₁₂ интенсивно изменяется в первом периоде ползучести и потом стабилизируется. Абсолютные значения коэффициента а₁₂, которые характеризуют несжимаемость материала, были в диапазоне 0.39-0.47 для всех типов нагрузки. Коэффициент а₂₂ интенсивно увеличивается в первичной стадии ползучести.

Приложение крутящего момента не влияет значительно на эволюцию коэффициентов а₁₂ и а₂₂.

Наблюдаются постоянные значения всех анизотропных коэффициентов во втором периоде процесса ползучести для всех напряженных состояний (типов нагрузки). Приращения всех коэффициентов анизотропии возрастают в конце процесса ползучести. Это действие возникающих небольших трещин и пустот в материале.

5. Выводы

- 1. Способ определения коэффициентов матрицы анизотропии простой и не имеет интенсивных допущений.
- 2. Коэффициенты анизотропии описывают уровень анизотропии деформации в металлах в течение процесса ползучести.
- 3. Применимый метод оценки анизотропии позволяет оценить влияние типа нагрузки

на деформационную анизотропию.

Автор работы благодарит Комитет научных изучений (KBN) за финансовую поддержку проекта W/WM/6/99 во время его реализации.

Список литературы

- 1. Микляев П. Г. Фридман Я. Б.: Анизотропия механических свойств металлов, Металлургия, Москва, 1969,
- 2. Dietrich L., Kiryk R., Turski K.: Changes of anisotropy of aluminium alloy under the influence of annealing (in Polish), Prace IPPT PAN, 24, 1994.
- 3. Jakowluk A., Mieleszko E.: No-potential theory of the construction of anisotropic creep constitutive laws, Res. Mechanica, <u>16</u>, 1985, 2, 147-155.
- 4. Mieleszko E.: Study about equation of creep constitutive laws (in Polish), 1987, Białystok
- 5. Norton F. H.: Creep in tubular pressure vessels, Transaction ASME, t. 61, 1939.
- 6. Przegalinski S.: Characteristics of steels, The steels to work at elevated and temperatures, steels for power industry (in Polish), series D, part 1., 1978, Publishers Śląsk.
- 7 Uscinowicz R.: "Some aspects of verification the creep description of the alloy in the complex stress state", Zesz. Nauk. Polit. Biał., 114, 4, Bialystok 1997, p. 207-218.
- 8. Uscinowicz R.: Experimental verification of similarity of creep velocity curves, Proceedings of Fourth International Conference on "Low Cycle and Elasto-plastic Behaviour of

Materials, Garnish-Partenkirchen, Elsevier Science Ltd. 1998, p. 259-264

 Uscinowicz R.: Influence of kind of loading state on the anisotropy development in the 15HM steel at an elevated temperature. Proceedings of 9th Inter. Symp. Creep Res. Met. Mater.-Creep'96, Publ. Vitkovice a.s. Research & Dev. Div., Ostrava, 1996, p. 400-405.