УДК 669.112.227

the star line

ВЛИЯНИЕ ТОЧЕЧНЫХ ДЕФЕКТОВ НА УПРУГИЕ ПОЛЯ ДИСЛОКАЦИОННЫХ ЦЕНТРОВ ЗАРОЖДЕНИЯ МАРТЕНСИТА

К.Н. Джемилев, А.В. Нефедов, М.П. Кащенко

Уральская государственная лесотехническая академия, 620100, г.Екатеринбург, Сибирский тр., 37 mpk@usfea.ru

Анализ упругого поля дефектов проводится в рамках концепций гетерогенного зарождения и волнового роста кристалла мартенсита. Рассмотрена модификация упругого поля дислокационной петли типа «дырка» примесью внедрения. Показано, что учет влияния примеси позволяет обосновать смещение габитуса от полюса (3 15 10) к (295).

1. Введение. Физическая постановка задачи.

Реконструктивные мартенситные превращения, типичным примером которых является γ->α (ГЦК->ОЦК) превращение в сплавах на основе железа, обладают ярко выраженными свойствами фазовых переходов 1-го рода. В связи с этим зарождение кристаллов новой фазы является гетерогенным. Как экспериментальные, так и теоретические результаты свидетельствуют в пользу зарождения в упругих полях дислокаций [1]. Если рассматривать в качестве модельных системы Fe-Ni (сплавы замещения) и Fe-C (сплавы внедрения), то, наряду с рядом сходных черт изменения базовых морфологических признаков при изменении концентрации, соответственно, никеля и углерода, можно указать и ряд отличий. Так, например, в системах Fe-C при концентрациях (0.6-1.4) С (вес.%) типичными ориентациями габитусов мартенсита являются {225}, не наблюдаемые в системах Fe-Ni. Кроме того, при больших концентрациях никеля (30-34%) типичными являются габитусы {31015}, тогда как для больших концентраций углерода (1.4-1.8 вес.%) характерны габитусы {259}. Адекватную в физическом отношении картину превращения дает подход [1], базирующийся на синтезе концепций гетерогенного зарождения и волнового роста мартенсита. В рамках этого подхода волновой процесс, управляющий ростом кристалла мартенсита, несет пороговую деформацию (со слабоискаженной или инвариантной плоскостью: растяжение-сжатие вдоль ортогональных направлений). Информация об ориентации волновых нормалей n₁ и n₂ управляющих волн наследуется волновым процессом в локальной области потери устойчивости решетки и, фактически, совпадает с ориентацией собственных векторов ξ1 и ξ2 тензора упругих деформаций дислокационных центров зарождения (ДЦЗ) мартенсита. Высокая (сверхзвуковая) скорость роста мартенсита свидетельствует о ведущей роли волнового процесса, что позволяет отождествлять ориентировки нормалей **h**₃ к наблюдаемым габитусным плоскостям с нормалями **h**_w:

$$\mathbf{h}_{w} \| \mathbf{n}_{2} \pm \frac{\mathbf{v}_{2}}{\mathbf{v}_{1}} \mathbf{n}_{1},$$
 (1)

507

(4)

где $|\mathbf{n}_2| = |\mathbf{n}_1| = 1$, а v₁, v₂ – модули скоростей продольных (квазипродольных) упругих волн в направлениях \mathbf{n}_1 , \mathbf{n}_2 .

Таким образом, имея информацию об упругих модулях монокристаллов, можно рассчитать векторы ξ_1 и ξ_2 в окрестности конкретных ДЦЗ, а затем с помощью (1) найти ориентировку h_w . Далее, сравнивая спектр расчетных ориентировок h_w со спектром h_2 , можно установить область локализации зародышей новой фазы. Подобная программа действий приводит [2] к хорошему согласованию расчетных и экспериментальных распределений габитусов для дислокационных петель (скользящего и призматического типов) в форме параллелограммов и прямоугольников, основные элементы которых совпадают с линиями $<1\overline{2}1 > u <1\overline{1}0 > .$ В частности, было высказано предположение о том, что упругое поле призматических петель дырочного типа может существенно модифицироваться примесью внедрения в ближней окрестности дислокационной петли. В связи с этим основная цель данной работы - рассчитать влияние добавочного упругого поля, создаваемого примесью внедрения, локализованной внутри петли «дырочного» типа, на процессы зарождения мартенсита. В первом естественно ис-

пользовать принцип суперпозиции при расчете результирующего упругого поля.

2. Методика расчетов

Тензор дисторсии упругого поля в окрестности дислокационной петли и распределенной внутри нее примеси внедрения в данной работе рассчитывался как сумма тензоров дисторсии от самой петли и от каждой примеси в отдельности. Расчет упругого поля дислокационной петли проводился по методике [2], основанной на вычислении тензоров дисторсии 4-х прямолинейных дислокаций, образующих петлю.

2.1 Методика расчета упругого поля примеси внедрения в формализме гриновских функций. Примесь внедрения в линейном упругом теле может быть рассмотрена как центр сжатия. Компоненты тензора дисторсии такого дефекта определяются уравнением:

$$\mathbf{x}_{ij} = \mathbf{u}_{i,j}(\mathbf{x}), \qquad (2)$$

где **х** – радиус-вектор от центра сжатия до точки наблюдения; u_{i,j} – производная i-го элемента поля смещений u по j-компоненте аргумента.

В свою очередь, поле смещений u, согласно [3], выражается через первую производную тензорной функции Грина для бесконечной упругой среды:

$$u_i(x) = \sum_k G_{ik,k}(x),$$
 (3)

т.е. можно переписать (2) в виде:

Таким образом, расчет упругого поля примеси (да и самой петли) основывается на введении тензорной функции Грина G(x), определяемой уравнением: $C_{ijkl}G_{kp,lj}(x) + \delta_{ip}\delta(x) = 0, \quad i, p = 1, 2, 3, \quad (5)$ где C_{ijkl} – тензор упругих постоянных 2-го порядка; $G_{kp,lj}$ – производная по 1 и ј компонентам аргумента тензорного элемента G_{kp} ; δ_{ip} – символ Кронекера; $\delta(x)$ – распределение Дирака.

 $\chi_{ij} = \sum G_{ik,kj}(\mathbf{x}) \, .$

Используя метод преобразования Фурье, выражение (5) можно переписать в виде $C_{ijkl}k_lk_jG_{kp}(\mathbf{k}) = \delta_{ip}$ или в тензорном виде: $\Gamma(\mathbf{k})\widetilde{G}(\mathbf{k}) = 1$, где $\Gamma(\mathbf{k}) = C_{ijkl}k_lk_j -$ тензор Кристоффеля, а затем можно явно выразить функцию Грина:

$$G(\mathbf{x}) = \frac{1}{8\pi^3} \operatorname{Re} \int_{\widetilde{\varepsilon}} \widetilde{G}(\mathbf{k}) e^{-i\mathbf{k}\mathbf{x}} d\widetilde{\mathbf{v}} = \frac{1}{8\pi^3} \operatorname{Re} \int_{\widetilde{\varepsilon}} \Gamma^{-1}(\mathbf{k}) e^{-i\mathbf{k}\mathbf{x}} d\widetilde{\mathbf{v}}, \qquad (6)$$

где є – фазовое пространство, а dv – элемент объема є.

Для численных методов расчета удобно преобразовать тройные несобственные интегралы (6) в однократные интегралы по единичному кругу в плоскости, перпендикулярной вектору х. Это преобразование приводит к следующему интегралу:

$$G(\mathbf{x}) = \frac{1}{4\pi^2 |\mathbf{x}|_0^{\pi}} \int_0^{\pi} \Gamma^{-1}[\mathbf{\xi}(\phi)] d\phi, \qquad (7)$$

где ξ – единичный вектор в плоскости, перпендикулярной x, задаваемый в ортогональном базисе a₁, a₂ выражением

$$\xi(\varphi) = a_1 \cos\varphi + a_2 \sin\varphi. \tag{8}$$

Кроме того, с помощью подобного интеграла можно вычислить и первые две производные от тензорной функции Грина. Интерес в данном случае представляет вто-

рая производная. Матричные элементы тензора χ в базисе {e_i}, образованном правой тройкой ортов, направленных вдоль осей четвертого порядка, выражаются формулами:

$$\chi_{ij} = \sum_{k} G_{ik,kj} = \frac{1}{4\pi^{2}r^{3}} \int_{0}^{\pi} [2\rho_{k}\rho_{j}\Gamma_{ik}^{-1} - 2(\xi_{k}\rho_{j} + \xi_{j}\rho_{k})F_{ik} + \xi_{k}\xi_{j}A_{ik}]d\phi, \qquad (9)$$

где ρ – единичный вектор в направлении **x**; $r = \sqrt{x_1^2 + x_2^2 + x_3^2}$;

$$F_{ik} = \sum_{lmnq} C_{lmnq} \Gamma_{il}^{-1} \Gamma_{nk}^{-1} (\xi_m \rho_q + \xi_q \rho_m);$$

$$A_{ik} = \sum_{lmnq} C_{lmnq} [(\xi_m \rho_q + \xi_q \rho_m) (F_{il} \Gamma_{nk}^{-1} + F_{nk} \Gamma_{il}^{-1}) - 2\Gamma_{il}^{-1} \Gamma_{nk}^{-1} \rho_q \rho_m]$$

Формула (9) и применялась для численного расчета тензора дисторсии примеси внедрения при написании пакета программ для расчета и анализа упругого поля дислокационной петли, насыщенной примесью внедрения.

2.2 Выбор расчетных параметров. Расчет упругого поля производился для призматических петель типа «дырка» с основной линией $[11\overline{2}]$ и дополнительной [111] и размерами сторон $L_1 = 7000$ и $L_2 = 1000$, что примерно отвечает наблюдаемым параметрам и дает возможность сравнивать результаты с более ранними [2]. Здесь и далее в качестве единицы длины принят параметр решетки (а) исходной фазы. В расчетах использовался вектор Бюргерса b|| $[01\overline{1}]$.

Вектора a₁ и a₂, используемые в качестве базисных для ξ в (9) определялись как:

 $a_1 = \mathbf{p} \times \mathbf{\tau}_1$; $a_2 = \mathbf{p} \times \mathbf{a}_1$, где $\mathbf{\tau}_1$ и $\mathbf{\tau}_2 - \mathbf{e}$ диничные вектора в направлениях основной и дополнительной линий.

Для определения точек наблюдения была выбрана цилиндрическая система отсчета с осью Z, совпадающей с τ₁ и началом координат на середине стороны L₁ петли. Отсчет полярного угла θ осуществлялся от плоскости петли (нулевому значению соответствует направление «от» контура петли).

Для расчетов применялся набор упругих модулей $C_L = 0,2508$; $C_{44} = 0,1034$; $C_S = 0,0271$ для монокристаллов Fe-31,5%Ni при температуре T = 673K, когда аномалия упругих свойств, связанных с магнитным упорядочением, еще не проявляется. По отношению к системе Fe-C, строго говоря, этот набор является модельным.

Выбрано равномерное однослойное распределение примеси внутри контура петли.

Следует заметить, что для сокращения времени расчета при большом (>10⁴) количестве примесей внутри петли группа примесей заменялась одной эффективной примесью, но с введением в формулу (9) множителя, численно равного количеству примесей в группе. Это допущение справедливо в силу использования принципа суперпозиции при вычислении суммарного тензора дисторсии. Если рассматривать группу, например, из 10 примесей, расположенных в квадрате 10х10, то на расстояниях порядка 100 и более параметров решетки от любой примеси группы векторы х от каждой из этих примесей совпадают с достаточной точностью.

3. Результаты расчета и их анализ

Расчет тензора дисторсии и представление его суммой трех диад позволяет выделить области, благоприятные для зарождения мартенсита, в которых тензор χ приближенно описывается одной из диад вида $\chi \approx Sh$, где S – вектор сдвига вдоль слабоискаженной (или инвариантной) плоскости с единичной нормалью h. Степень отличия сла-

боискаженной плоскости от инвариантной характеризуется параметром $\eta = |\epsilon_3|/\sqrt{\epsilon_1}|\epsilon_2|$, где ϵ_i – собственные числа тензора деформации ($\epsilon_1 > 0$, $\epsilon_2 < 0$). Относительное изменение объема δ в линейном приближении совпадает со следом тензора дисторсии $\delta = Sp\chi$. На рис.1 представлены зависимости S = |S|, η , δ от угла θ для петли с параметрами, указанными в 2.2, при Z = 0 и расстоянии от начала координат R = 200без примеси внедрения (S_0 , η_0 , δ_0) и (S_1 , η_1 , δ_1) – при количестве примеси N, эквивалентном 4,2 10⁵.

Рис. 1. Угловые зависимости параметров п, би S, 1-без примеси; 2 – с примесью.

Масштаб по оси Y выбран условный, но соответствующие друг другу параметры выведены в одном масштабе. Прежде всего отметим, что аномалии угловых зависимостей при $\theta \rightarrow \pm 180^{\circ}$ не следует рассматривать, так как они соответствуют точкам наблюдения в плоскости петли в пределах ее контура. Тогда актуальной для зарождения мартенсита является область, характеризуемая максимальными значениями S и δ (при $\delta>0$) и минимальными значениями η . Из рисунка очевидно, что можно ограничиться рассмотрением диапазона углов $90 < 0 < 135^{\circ}$. Очевидно, что примесь внедрения для данного R практически до нуля уменьшает диапазон углов, для которого выполняется условие $\delta > 0$, смещает η_{min} в сторону меньших углов, и практически не затрагивает область локализации S_{max} . При этом ориентировка нормалей h_w заметно изменяется: в отсутствие примеси в спектре h_w содержится направление [3 15 10] и не содержится направление [2 9 5], тогда как при наличии примеси ситуации обратная. Заметим, что в отличие от эволюции h_w поведение нормалей $h = \xi_2 - \xi_1 \sqrt{\epsilon_1/|\epsilon_2|}$ к слабоискаженным плоскостям характеризуется малым изменением ориентировок, включающих в свой спектр ориентировки, близкие к [295] направлению, в обоих случаях. Сказанное иллюстрирует рис.2, на котором изображены стереопроекции нормалей h_w (рис.2,*a*) и h (рис.2,*b*) для интервала $90 < 0 < 135^{\circ}$. Кроме того, на рис.2 приводятся ориентировки h_w и h для того же интервала углов и N при больших расстояниях R (400, 600, 800). Видно, что изменение R от 200 до 600 сохраняет в спектре ориентировок h_w направление [295], тогда как из спектра h оно исключается. Это обстоятельство свидетельствует в

510

[010]

[010]

Рис.2, а Стереопроекции нормалей h_w , 1 — без примеси для R = 200; 2-5 с примесью для R = 200; 400; 600; 800.

Рис. 2, б Стереопроекции нормалей **h**, 1 — без примеси для R = 200; 2-5 с примесью для R =200; 400; 600; 800.

пользу высказанного ранее утверждения о ведущей роли волнового процесса при формировании прообраза мартенситной пластины в области аустенита, теряющей устойчивость, и, как следствие, в формировании габитуса. Направлению [295] в спектре h_w

соответствует максимум относительного изменения объема (δ>0).

Дополнительно укажем, что при увеличении R от 200 до 800 наблюдается небольшое увеличение δ , связанное с более высоким темпом убывания вклада примеси (~|x|⁺³) по сравнению с вкладом от дислокационной петли. Таким образом, в качестве оптимального расстояния для зарождения кристаллов мартенсита с габитусами (295) вблизи рассматриваемой петли является R \approx 600, что в целом согласуется с высказанным ранее предположением. Проведенные расчеты позволяют судить о возможной величине избыточной концентрации примеси внедрения в области дислокации типа «дырка», так как параметр N применительно, например, к системе Fe–C, характеризует именно избыток атомов углерода по сравнению с «фоновой» концентрацией, соответствующей однородному распределению примеси по всему объему.

Разумеется, сделанное предположение о равномерном распределении примеси в плоскости петли является достаточно грубым. Естественным уточнением представляется использование распределения, коррелирующего с объемным эффектом в плоскости петли, создаваемым самой петлей.

4. Заключение

Проведенное рассмотрение показывает, что упругое поле примеси существенно сказывается на условиях зарождения мартенситного кристалла, и учет его необходим при отборе дислокационных центров зарождения в сплавах внедрения. В рамках общего подхода [1], позволяющего с помощью анализа макроскопических морфологических признаков реконструировать наиболее существенные аспекты первой стадии мартенситного превращения, учет влияния примеси может дать дополнительную информацию об их распределении вблизи ДЦЗ.

Список литературы

- Кащенко М.П. Волновая модель роста мартенсита при γ→α превращении в сплавах на основе железа. Екатеринбург: УИФ Наука, 1993. 224 с.
- 2. Нефедов А.В. Связь морфологии мартенсита с характеристиками области зарождения в упругих полях дислокаций. / Диссер. на соискание уч.ст. к.ф.-м.н. Екатеринбург, 1997. 104 с.
- 3. Теодосиу К. Упругие модели дефектов в кристаллах. М.: Мир, 1985. 352 с.

- R. C. M. The strategic lands