ПОВЫШЕНИЕ КООРОЗИОННОЙ СТОЙКОСТИ ПРИ МОДИФИЦИРОВАНИИ РЗМ НИЗКОУГЛЕРОДИСТЫХ НИЗКОЛЕГИРОВАННЫХ ТРУБНЫХ СТАЛЕЙ

Тетюева Т.В., Иоффе А.В., Денисова Т.В.

000 «Самарский инженерно-технический центр», г. Самара, Россия, ioffe@eor.samara.ru

Внугренняя коррозия является одной из наиболее распространенных причин разрушения трубных сталей. Относительно дешевым и эффективным способом очистки стали от серы и кислорода, уменьшения количества и сфероидизации неметаллических включений, а следовательно и повышения коррозионной стойкости сталей, является обработка стали комплексными модификаторами, содержащими Са и РЗМ. Отсутствие представлений о количественной связи вводимых РЗМ и изменения коррозионных свойств обусловило проведение данной работы.

Исследование проводили на образцах, вырезанных из бесшовных труб, изготовленных из стали 13ХФА (С–0,14%, Сг–0,53%, Si–0,34%, V–0,052%) 4 различных плавок. Металл плавки № 1 подвергнут обработке кальцийсодержащей проволокой (обычная технология). Металл плавок № 2, № 3, № 4 подвергнут обработке церийсодержащей проволокой в количестве 700, 900 и 1000 метров, что соответственно составляет 0,215, 0,260, 0,282 кг/т.

На образцах труб 4 плавок оценивалась ликвационная неоднородность, загрязненность неметаллическими включениями и проводили следующие коррозионные испытания: стойкость к сульфидному коррозионному растрескиванию под напряжением (стандарт NACE TM0177, метод A и D), стойкость к водородному растрескиванию (стандарт NACE TM0284) и на стойкость к общей коррозии (стандарт NACE TM0177, среда A). Результаты испытаний приведены в таблице 1

Таблица 1

№ Плавки	Стойкость к СКРН время испытаний 720 ч				Загрязненность металла неметаллическими включениями		
	Нагрузка в % от от Н/р не разрушился Р - разрушился			K _{Issc} , Mna·м	Сульфиды	Оксиды точечные	Оксиды строчечные
	75	80	90				
Плавка №1 без РЗМ	H/p	P	P				
	потеря пластичности, %			39	3	3	3
	35						
Плавка №2 РЗМ 700 м- 0,215 кг/т.	H/p	H/p	P				
	потеря пластичности, %			41	1	0,5	3
	20	25	_				
Плавка №3 РЗМ 900 м 0,260 кг/т.	H/p	H/p	H/p				
	потеря пластичности, %			44	0,5	0.5	1
	15	20	23		7-		
Плавка №4 РЗМ 1000 м 0,282 кг/т.	H/p	H/p	H/p				
	потеря пластичности, %			46	0,5	0,5	0,5
	5	8	10				

Основные выволы:

^{1.} Модифицирование металла РЗМ обеспечивает более глубокую очистку низкоуглеродистых низколегированных сталей от серы и кислорода, уменьшает степень загрязненности сталей неметаллическими включениями и сфероидизирует неметаллические включения.

2. Модифицирование P3M значительно повышает стойкость стали 13 XФA к сульфидному коррозионному растрескиванию под напряжением, к водородному растрескиванию и к общей коррозии.

ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ БИМЕТАЛЛИЧЕСКОЙ Сu-Ag ПРОВОЛОКИ ДЛЯ ВНУТРИМАТОЧНЫХ СПИРАЛЕЙ

Клубович В.В., Рубаник В.В., Царенко Ю.В., *Дородейко В.Г., Рубаник В.В. (мл.), Новиков В.Ю., Мосин А.В.

> ГНУ «Институт технической акустики НАН Беларуси», г.Витебск *ЗАО «Медицинское предприятие «Симург», г.Витебск ita@vitebsk.by

Одними из наиболее эффективных и распространенных противозачаточных средств являются внутриматочные спирали (ВМС) на основе биметаллической проволоки медьсеребро. Медь представлена в виде оболочки с центральной жилой из серебра, выполняющей роль каркаса, на котором закреплена оболочка из меди, обеспечивающая контрацептивное действие (рис.1).

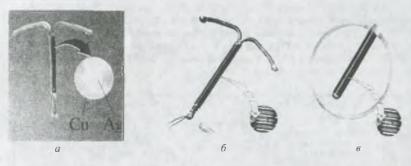


Рис 1. Общий вид композиционной проволоки Cu-Ag (a) и внутриматочных спиралей (6, 8)

Исследования процессов протекающих на границе медь-серебро в ультразвуковом поле представляет как научный интерес, в плане изучения процессов диффузии и образования промежуточного слоя переменного состава, так и практический, как способ получения биметаллической проволоки с заданными физико-химико-механическими свойствами.

Волочение биметаллической проволоки отличается от процесса протягивания монометаллической рядом специфических особенностей. На результаты деформирования слоистой проволоки оказывают большое влияние неоднородность материала по сечению, величина внешнего трения и межслойного сцепления, относительное объемное содержание компонент в проволоке, их деформационные показатели упрочнения и соотношение прочностных свойств и т.д. При волочении биметаллической проволоки может разрушиться оболочка, а сердечник сохранится целым или наоборот; чаще оболочка и сердечник разрушаются одновременно. Разрушение монослоев биметаллической проволоки вызывается возникающими в них напряжениями, значение которых зависит от перечисленных параметров.