ВЛИЯНИЕ СОСТАВА И СПОСОБА ЛИТЬЯ НА ПРОЧНОСТЬ ЛИТЫХ ДЕТАЛЕЙ ИЗ ХРОМИСТЫХ ЧУГУНОВ

Марукович Е.И., Ильюшенко В.М., Дувалов П.Ю.

ГНУ «Институт технологии металлов НАН Беларуси», г. Могилев, Республика Беларусь, Lct@tut.by

В основном быстро изнашиваемые узлы и детали определяют период работы дробильно-размольного оборудования до плановой замены этих элементов. Очевидно, что актуальной является задача по разработке технологии литья и составов износостойких чугунов, позволяющих повысить эксплуатационные характеристики сменных деталей.

В Институте технологии металлов НАН Беларуси разработаны специальные хромистые сложнолегированные чугуны, содержащие С от 3,2 до 3,6%, Сг от 16 до 20% и легирующие элементы: Ni (0,4—0,6%), Mn (0,5—0,8%), Mo (0,3—0,5%), W (0,5—0,7%) и V (0,2—

0,3%) [1].

Перспективными технологиями для решения этой задачи являются разработанные в Институте технологии металлов НАН Беларуси методы литья в комбинированные формы и кокили [2]. Детали, изготовленные этими методами, имеют более мелкую микроструктуру с кристаллами ориентированными в направлении перпендикулярно износу. Кроме того отливки получаются плотными, без усадочных дефектов, имеющие более высокую твердость при меньщем содержании легирующих элементов.

Были обработаны результаты более 40 плавок с общим количеством разлитого металла примерно 10 тонн, из которого получено более 700 подкладных листов и около 1000 отбойных плит. В результате на рис. 1 представлена зависимость твердости рабочих поверхностей реальных деталей для центробежных дробилок и мельниц, таких как подкладной лист и отбойная плита в зависимости от содержания углерода и хрома.

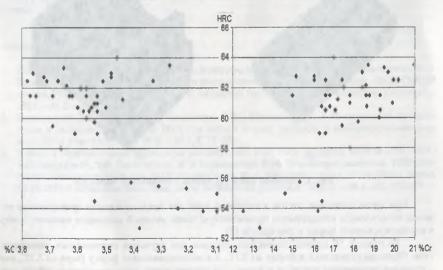
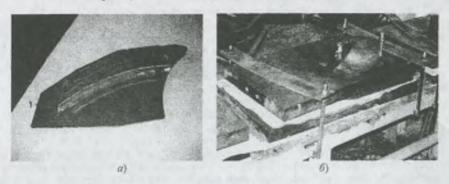



Рис. 1. Зависимость твердости деталей их хромистых чугунов от содержания С и Сг.

Стабильно получать твердость рабочих поверхностей отливок в пределах 60-63 HRC в литом состоянии можно при содержании Cr от 16 до 20% и C от 3,45–3,78%.

Листы отливались в комбинированную форму, состоящую из нижней и верхней металлических плит. Периметр листа при этом формируется в контакте с формой из ХТС. В верхней плите имеется литниковая чаша одновременно служащая и питателем, также выполненная из ХТС (рис. 2).

Рис. 2. Подкладной лист (a); комбинированная форма с литниковой чашей (δ).

Отбойные плиты изготавливались литьем в кокиль. Отбойная плита и кокиль для ее изготовления показаны на рис. 3.

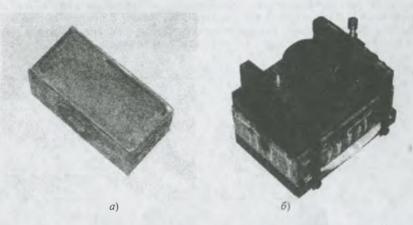


Рис. 3. Отбойная плита (а); кокиль с литниковой чашей (б).

При литье защитных листов и отбойных плит для предотвращения приваривания отливки использовали специальную термостойкую ткань, которой защищали нижнюю плиту в комбинированной форме и дно кокиля [3].

Из каждой 10 плавки отливались образцы для изучения прочностных характеристик. Образцы отливались в форму из ХТС, в комбинированную форму (верх из ХТС, низ – стальная окрашенная плита), и в форму, где нижняя плита защищена термостойкой тканью, в каждую форму по 3 штуки. Прочность материала определяли испытанием на излом. Результаты испытаний представлены в таблице 1

Таблица 1. Результаты измерения прочности на излом.

Метод литья	№ образ- ца	Сечение образца, мм²	Прочность на излом, Н/мм ²	Среднее значение прочности, Н/мм ²
Литье в форму из ХТС	1	190,13	95,68	97,18
	2	178,06	103,89	
	3	185,25	92,04	
Верх из XTC, дно – металлическая плита	1	185,25	100,19	90,26
	2	187,69	88,82	
	3	180,38	81,83	
Нижняя плита с защитной тканью	1	173,25	116,54	121,38
	2	180,5	123,32	
	3	177,75	124,28	

Наибольшей прочностью отличаются образцы, отлитые с применением защитной кремнеземной термостойкой ткани. Это может объясняться тем, что в начальный момент литья теплопроводность ткани существенно меньше теплопроводности кокильных красок, поэтому расплав равномерно растекается по всей поверхности и начинает равномерно кристаллизоваться. После нагрева ткани до температуры ее свечения теплопроводность ткани резко возрастает, и отливка формируется, образуя плотную структуру по всему сечению.

Список литературы

- Износостойкий чугун: пат. 14155 Респ. Беларусь, МТІК С22С 37/00 / В.М. Ильюшенко, К.Э. Барановский; заявитель ГНУ «Институт технологии металлов НАН Беларуси» № а 20090689; заявл. 13.05.2009; опубл. 30.04.2011 // Афіцыйны бюл. / Нац. цэнтр інтэлектуал. уласнасці. 2011. № 2. С. 103
- Барановский Э.Ф., Пумпур В.А., Ильюшенко В.М., Барановский К.Э. Исследование затвердевания и охлаждения отливки из ИЧХ при литье в кокиль, песчаную и комбинированные формы// Литье и металлургия 2010. № 3, С.25 -30.
- Кокиль с горизонтальной плоскостью разъема: пат. 6386 Респ. Беларусь, МПК В 22D 15/00 / Е.И. Марукович, Э.Ф. Барановский, К.Э. Барановский, В.М. Ильюшенко; заявитель ГНУ «Институт технологии металлов НАН Беларуси» — № и 20091046; заявл. 12.09.2009; опубл. 30.08.2010 // Афіцыйны бюл. / Нац. цэнтр інтэлектуал. уласнасці. – 2010. – № 4. – С. 178-179