ВЛИЯНИЕ ТЕРМИЧЕСКОЙ ОБРАБОТКИ НА МЕХАНИЧЕСКИЕ И КОРРОЗИОННЫЕ СВОЙСТВА СТАЛИ 15X5МФБЧ

Иоффе А.В. 1 , Тетюева Т.В. 1 , Выбойщик М.А. 2 , Князькин С.А. 1 , Трифонова Е.А. 1 , Зырянов А.О. 1

¹ OOO «Самарский инженерно-технический центр», г. Самара, ioffc@eor.samara.ru

² Тольяттинский государственный университет, г. Тольятти, yma@land.ru

Исследуется влияние температуры отпуска на микроструктуру и карбидные превращения в стали 15Х5МФБЧ с целью получения оптимального сочетания прочностных и коррозионных свойств.

На основе специально построенной ТКД и результатов металлографического анализа, была выбрана нормализация от 900°С с охлаждением водо-воздушной смесью (ВВС). Микроструктура стали 15Х5МФБЧ после нормализации с ВВС представлена верхним и нижним бейнитом, размер первичного аустенитного зерна не превыпает ∼12мкм. После нормализации металл подвергали отпуску при температурах 680,720, 730, 740, 760, 770 и 780°С в течение одного часа.

При температуре отпуска 680°С в структуре стали выявлены легированные карбиды цементитного типа Me_3C и имеющие когерентную связь с матрицей карбиды VC. Повышение температуры отпуска до $720^{\circ}C$ стимулирует коалесценцию легированного хромом цементита и образование карбидов Me_7C_3 на месте растворения карбидов цементитного типа Me_3C . Так же теряется когерентная связь с матрицей мелкодисперсных, равномерно распределенных по структуре, карбидов VC. В результате отпуска при $730^{\circ}C$ фазовый состав карбидной составляющей не меняется. Увеличивается доля рекристаллизованных зерен. Вследствие, повышенной стабильности микроструктуры не происходит резких скачков в изменении прочностных и вязко-пластических характеристиках. Металл имеет однородную мелкозернистую феррито-карбидную структуру. Преимущественно наблюдаются карбиды (Me_7C_3) удлиненной формы и мелкодисперсные карбиды VC. При этом сохраняется незначительное количество округлых карбидов Me_3C . На границах бывшего аустенитного зерна начинается зарождение и последующий рост новых рекисталлизованных зерен феррита. Отпуск в интервале $720-730^{\circ}C$ обеспечивает σ_B на уровне $700-750M\Pi a$.

С повышением температуры отпуска от 680 до 730°C стойкость к СКРН по методам

Д и С возрастает.

Дальнейшее повышение температуры отпуска в интервале 740-780°С приводит к стабилизации карбидной фазы. В структуре стали уменьшается количество карбидных частиц Ме₂С₃ и наблюдается выделение и коалесценция частиц Ме₂С₆. Карбиды VC не были выявлены. Повышение относительного удлинения и ударной вязкости в исследуемом интервале температур отпуска происходит из-за снижения плотности дефектов и увеличения доли рекристаллизованного феррита.

В результате отпуска при 740° С стойкость к СКРН снижается, что по-видимому, связано с образованием более крупных карбидов $Me_{23}C_6$ и началом растворения карбидов

VC.

Лабораторные испытания металла после термической обработки нормализация 900°C + отпуск 730°C в СО₂ насыщенной среде показали, что скорость углекислотной коррозии не превышает 0,2мм/год. Высокая стойкость к углекислотной коррозии обусловлена образованием обогащенных хромом продуктов коррозии.

Таким образом термообработка (нормализация + отпуск 730°C) обеспечила для стали $15X5M\Phi B U$ ов на уровне 700–750МПа и $8\ge20\%$ в сочетании с высокими показателями стойкости к СКРН ($K_{1SSC}=31$ МПа·м $^{1/2}$ и $\sigma_{th}=80\%$ от $\sigma_{0,2}$) и углекислотной коррозии.