УДК 548.735:669.715

СТРУКТУРА И МИКРОТВЕРДОСТЬ ФОЛЬГ СПЛАВОВ СИСТЕМЫ АІ-NI-Cr, ПОЛУЧЕННЫХ МЕТОДОМ ПРОКАТКИ ИЗ РАСПЛАВА

Шепелевич В. Г., Сивцова П. А.

Белорусский государственный университет, Минск, Беларусь mikhalch@mail.ru

Актуальной проблемой современного металловедения является исследование свойств быстро затвердевших алюминиевых сплавов, которые находят широкое применение в качестве конструкционных материалов в виде гранулированных сплавов. Они отличаются улучшенными механическими свойствами, в частности, упругостью и прочностью на разрыв. Улучшение механических свойств быстрозатвердевших сплавов связывают с образованием пересыщенного твердого раствора и системы ультрамелкодисперсных включений. Следует, однако, заметить, что сплавы, полученные сверхбыстрой закалкой из расплава, находятся в нестабильном состоянии и изменяют свои свойства со временем, особенно при термических нагрузках. При повышенных температурах пересыщенный твердый раствор распадается, происходит рост и последующая коалесценция включений, которая приводит к падению механических свойств. Объектом данного исследования была выбрана система Al-Ni-Cr, в которой возможно существенное упрочнение сплава. Как никель, так и хром, отличаются низкой равновесной растворимостью в алюминии при комнатной температуре: менее 0.006 масс.% и менее 0,3 масс. %, соответственно [1]. Исследования этой системы [2, 3] подтверждают данное предположение. Фольги, полученные центробежным затвердеванием со скоростью охлаждения ~10⁶ К/с, показали значительное увеличение микротвердости по сравнению с массивными образцами тех же сплавов.

Сплав номинального состава Al-1,7 ат.% Ni-0,44 ат.% Сг был получен сплавлением компонентов в индукционной печи. Данный сплав и алюминий использовались для синтеза сплавов Al-0,85 ат.% Ni-0,22 ат.% Сг и Al-0,42 ат.% Ni-0,11 ат.% Сг. Для получения фольг сверхбыстрой закалкой из жидкой фазы капля расплава (~0,2 г) прокатывалась между медными цилиндрами диаметрами 5 и 20 см. Длина полученных фольг колебалась около 10 мм, ширина – около 5 мм. Толщина исследуемой фольги находилась в пределах 30...50 мкм. Скорость охлаждения, как показал расчет, достигала ~10⁶ K/c [4]. Далее сторона фольги, примыкавшая при затвердевании к большему барабану, будет называться стороной А, а противоположная – стороной Б.

Поверхностная структура образцов изучалась посредством растрового электронного микроскопа LEO 1455 VP. Поверхность исследовалась у исходных образцов, а также у образцов, подвергавшихся отжигу при температурах 170, 270, 380 и 500 °C на протяжении 1 часа. Рентгенографические исследования проводились на дифрактометре ДРОН-3М в геометрии Брегга-Брентано в монохроматизированном медном излучении. Параметр решетки твердого раствора и физическое уширение его линий рассчитывались для линии (420). Текстура фольг изучалась методом обратных полюсных фигур. Полюсная плотность дифракционных линий *p* рассчитывалась по методу Харриса. Микротвердость фольг по Виккерсу исследовалась с помощью микротвердомера ПМТ-3. Прилагаемая нагрузка составляла 20 г, время выдержки – 15 секуна. Изохронный отжиг исследуемых фольг проводился последовательно в температурном диапазоне 20-600 °C с шагом в 30 °C на протяжении 20 мин при каждой температуре. Изотер-

Рис. 1. Относительное содержание никеля (черная кривая) и хрома (серая кривая) в полосе шириной 3 мкм, показанной на вышележащей электронномикроскопической фотографии, по данным Ожеспектроскопии.

мический отжиг для исследования микротвердости проводился при температурах 70, 170, 270, 380, 480 и 580 °С в течение нескольких часов.

Электронно-микроскопические исследования поверхности показали. что наряду с твердым раствором в фольгах присутствуют включения фазы Al₃Ni (рис. 1), выделяющиеся более светлыми пятнами на фоне темного твердого раствора. При отжиге количество и размер включений увеличиваются (рис. 2). Хорошо заметна на фотографиях также ячеистая структура фольг, наиболее ярко выраженная в воздушных карманах - в местах, где фольга не контактировала непосредственно с поверхностями кристаллизаторов. Включения локализуются по границам ячеек, визуализируя их вне воздушных карманов.

Ршс. 2. Электронно-микроскопические фотографии поверхности фольг сплава Al-1,7 ат.% Ni-0,44 ат.% Сг: а) исходный образец, сторона A; б) исходный образец, сторона Б; в) образец после отжига при 500 °C, сторона A; г) образец после отжига при 500 °C, сторона Б.

Рис. 3. Зависимость суммарной интенсивности линий включений Al₃Ni от температуры последовательного отжига (время отжига 1 час для каждой температуры).

Таблица 1. Полюсные плотности дифракционных линий α-Al.

hki	Al-1,7% Ni-	Al-0,85% Ni-	Al-0,42% Ni-		
	0,44% Cr	0,22% Cr	0,11% Cr		
111	2,6	2,6	2,5		
200	0,7	0,8	0,6		
220	1,0	0,8	0,9		
311	0,7	0,8	0,8		
331	0,7	0,5	0,6		
420	0,7	0,5	0,8		

Рентгеноструктурные исследования показывают, что основной фазой сплавов является твердый раствор на основе алюминия α-АІ. Твердый раствор пересыщен, так как измеренный параметр решегки оказывается меньше соответствующего равновесной растворимости легирующих компонент для всех сплавов [1]. Интенсивность линий включений AlaNi при последовательном отжиге растет (рис. 3). Параметр решетки α-Al с увеличением концентрации легирующих компонент падает, а при отжиге незначительно увеличивается: от 4.045 Å ло 4.047 Å 7179 сплава Al-1.7 ат.% Ni-0.44 ат.% Сг. но ни для какого состава не достигает параметра решетки чистого Al. Физическое уширение в лифракционной линии (420) растет вместе с содержанием Ni и Cr. а при отжиге имеет тенденцию к уменьшению.

> Полученные методом прокатки фольги, как и ранее исследованные [2, 3], текстурированы в направлении (111) (табл. 1). Кроме того, на бугристой стороне явно заметно увеличение полюсной плотности линии (200), за счет уменьшения полюсной плотности линии (111). Текстурирование в направлении (100) характерно для алюминиевых сплавов в условиях квазиравновесного

затвердевания, поэтому найденное перераспределение полюсных плотностей свидетельствует о существенно более низкой скорости кристаллизации с бугристой стороны. При отжиге текстура сохраняется (табл. 2).

Таблица 2. Изменение полюсных плотностей дифракционных линий α-A1 при последовательном изохронном отжиге (t = 1 ч)

ħkl	Температура отжига							
	Исх.	70 °C	170 °C	270 °C	380 °C	480 °C	580 °C	
111	2,7	2,6	2,9	2,8	2,8	2,7	2,8	
200	0,6	0,6	0,7	0,7	0,6	0,5	0,6	
220	0,8	0,9	0,8	0,8	0,8	0,8	0,7	
311	0,7	0,8	0,8	0,7	0,7	0,7	0,7	
331	0,5	0,6	0,6	0,5	0,5	0,5	0,7	
420	0,7	0,6	0,4	0,5	0,6	0,7	0,7	

Микротвердость полученных фольг растет с концентрацией Ni и Cr в сплаве, причем быстрее, чем для массивных образцов тех же сплавов (рис. 4).

Рис. 4. Микротвердость фольг и слитков исследованных сплавов Al-Ni-Cr.

Изохронный отжиг показывает следующее поведение микротвердости в зависимости от температуры (рис. 5). Начальное понижение сменяется постепенным ростом твердости и приводит к максимальному упрочнению фольг после отжига при 200-260 °C, причем при увеличении концентрации легирующих компонент максимум достигается при меньшей температуре. Последующее спадание микротвердости сменяется новым ростом в температурном диапазоне 350-410 °C, а затем - разупрочнением.

Сложное поведение микротвердости нетипично для быстрозатвердевших сплавов алюминия, поэтому результаты изохронного отжига были проверены изотерми-

ческим (рис. 6). Было подтверждено существование обоих максимумов именно в указанных выше температурных диапазонах: на рис. 5 им соответствуют графики при температурах отжига 170 и 380 °C.

Начальное падение микротвердости связано с отжигом микронапряжений. Далее происходит увеличение твердости, благодаря интенсивному росту включений Al₃Ni, что подтверждается данными рентгеновских исследований: в этом температурном интервале происходит рост интенсивности линий Al₃Ni и одновременное уменьшение физического уширения линий и увеличение параметра решетки α-Al. Дальнейшая коалесценция выделений приводит к ухудшению механических характеристик сплава.

Рас. 5. Изменения микротвердости фольг при изохронном отжиге.

Вторичное упрочнение, на наш взгляд, связано с образованием хромистых выделений, вероятно, фазы Al₇Cr. Рентгенологическое определение ее затруднительно в связи с перекрытием ее рефлексов линиями оксида алюминия, в то же время при электронной микроскопии контрастность включений Al₇Cr мала, поэтому ее определение является нетривиальной задачей.

Рис. 6. Изменения микротвердости фольг сплава Al-1,7% Ni-0,44% Сг при изохронном отжиге.

Список литературы

- Мондольфо Л. Ф. Структура и свойства алюминиевых сплавов. М.: «Металлургия», 1979. 640 с.
- Сивцова П. А., Шепелевич В. Г. Исследование структуры и механических свойств богатых алюминием сплавов системы Al-Ni-Cr. // В Машиностроение: Респ. межвед. сб. науч. трудов. – Вып. 19. – Мн.: УП «Технопринт», 2003. – 793 с. Сс. 717–720.
- Сивцова П. А., Шепелевич В. Г. Влияние отжига на свойства быстрозатвердевших фольг сплавов системы Al-Ni-Cr. // В Быстрозакаленные материалы и покрытия // Доклады 2-ой Всероссийской научно-технической конференции, 17-18 ноября 2003 г., "МАТИ" – РГТУ им. К. Э. Циолковского.: М.: Издательский центр "МАТИ" – РГТУ им. К. Э. Циолковского, 2003. – 273 с. Сс. 53–58
- Вассерман Г., Гревен И. Текстуры металлических материалов. М.: «Металлургия», 1969. 654 с.