видимому, это связано со стабилизирующим величину зерна влиянием частиц нитридов, выделяющихся при старении при 700°С. При 950°С рекристаллизация значительно опережает процесс дисперсионного твердения, инкубационный период зарождения нитридов значительно больше, а скорость их роста меньше, чем при 700°С.

Список литературы

- 1. Дубовик Н.А., Зуев Л.Б., Пак В.Е. Влияние режимов механотермической обработки на коэффициент деформационного упрочнения аустенитных сталей с азотом // Изв. вузов. Черная металлургия. 1997. №12. С.35-37.
- Зуев Л.Б., Дубовик Н.А., Пак В.Е. О природе упрочнения высокоаэотистых сталей на основе железохромомарганцевого аустенита //Изв. вузов. Черная металлургия. №10. С.61-64.
- 3. Шоршоров М.Х., Тихонов А.С., Булат С.И., Гуров К.П., Надирашвили Н.И., Антипов В.И. Сверхпластичность металлических материалов М.:Наука. 1973, 220 с.
- 4. Дубовик Н.А., Зуев Л.Б. Эволюция дислокационной структуры в высокоазотистых аустенитных сталях // Изв. вузов. Черная металлургия. 1992. №4.С.34-37.
- 5. Литовченко И.Ю., Тюменцев А.Н., Пинжин Ю.П., Гирсова С.Л., Нестеренков В.А., Овчинников С.В., Строкатов Р.Д., Дубовик Н.А. Особенности переориентации кристаллической решетки и механизм локализации деформации в высокоазотистых аустенитных сталях в условиях их фазовой нестабильности в полях неоднородных напряжений // Физическая мезомеханика. 2000. Т.3 №3 С.5-14.
- 6. Гальченко Н.К., Строкатов Р.Д., Радашин М.В. Сверхпластичность высокоазотистых аустенитных сталей // Металлы. 1999. №3. С.91-94.
- Полетика И.М., Суховаров В.Ф., Панин В.Е., Тимофеев В.Н. Исследование процессов распада и рекристаллизации в высокоазотистых хромоникелевых сталях // ФММ. Т.57. 1984. С.981-984.
- Кузнецова Р.И., Жуков Н.Н. Порообразование при сверхпластичности // ФММ.1977. Т.44. вып.6. С.1277-1281.
- 9. Джифкинс Р.К. Атомный механизм разрушения. М :Металлургиздат. 1963. 593 с.

УДК 669.0.46.539.382.2.

ФИЗИЧЕСКАЯ ПРИРОДА ЭВОЛЮЦИИ СТРУКТУРНО-ФАЗОВЫХ СОСТОЯНИЙ КОТЕЛЬНЫХ СТАЛЕЙ ПРИ ЭКСПЛУАТАЦИИ

Пискаленко В. В., Конева Н. А.*, Зуев Л. Б.**, Данилов В. И.**, Целлермаер В. Я., Громов В. Е., Коновалов С. В.

Сибирский государственный индустриальный университет, Новокузнецк, Россия, gromov@physics.sibsiu.ru

- * Томский Государственный архитектурно-строительный университет, Россия, Томск
 - ** Институт физики прочности и материаловедения СО РАН, Россия, Томск

Решение проблемы надежной безотказной службы теплоэнергетического оборудования имеет важное народно-хозяйственное значение. Для этого необходим постоянный неразрушающий контроль за дефектами и их развитием. Деградация механических свойств металла при эксплуатации определяется изменениями в структурно-фазовых состояниях.

В связи с этим актуальной является задача исследования изменения структуры, фазового состава, дислокационной субструктуры и механических свойств сталей теплоэнергетического оборудования в процессе длительной работы для установления физической природы их деградации и разработки рекомендаций по надежной безопасной эксплуатации. В настоящей работе выполнен комплекс исследований структурно фазовых состояний и механических свойств разных котельных сталей при эксплуатации.

Было установлено, что в сталях 10 и 15К при эксплуатации происходит заметное снижение прочностных свойств: пределов текучести и прочности. Причем этот процесс существенно интенсифицируется при повышении рабочей температуры. За 3 года эксплуатации при 450°С снижение σ_{τ} произошло на 31% по отношению к исходному значению, а σ_{s} – на 28%. В то же время после эксплуатации в течение 6 лет, но при 300°С, σ_{τ} уменьшился на 15%, а σ_{s} – на 20%. Что касается ударной вязкости, то ее значения во всех случаях превышали требования ГОСТ 5520-79, мало изменяясь в соответствии со сроком службы. Понижение температуры испытания на ударную вязкость до -40° С к существенному уменьшению этой характеристики не привело. Следует отметить неоризначное поведение характеристик пластичности. Общая тенденция соответствует возрастанию пластичности, но после 6 лет эксплуатации при 300°С значение относительного удлинения до разрыва оказалось идентичным исходному, а относительное сужение вообще уменьшилось.

За время пятилетней эксплуатации в стали 10 уменьшилась объемная доля перлитных зерен и их размер, а размер ферритных зерен возрос [1]. Среди сохранившегося перлита доля несовершенных перлитных частиц возросла. Вследствие фазовой перекристаллизации значительная часть цементита из разрушенных перлитных зерен переместилась на границы ферритных зерен, образовав там прослойки. Плотность дислокаций в феррите и перлите возросла, по-видимому, из-за переноса углерода через твердый раствор (табл. 1). При этом тип дислокационной структуры остался неизменным [2].

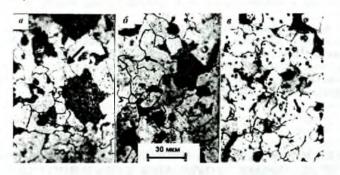

На стали 12X1МФ были проведены исследования после модельных термобарощиклических испытаний в среде с вредными органическими добавками. Цикл состоял в нагреве и выдержке до выбранной температуры в течение 8 часов при давлении 14 МПа с последующим охлаждением в течение 16 часов. Варьировалось число циклов и состав органических добавок. Исследовались образцы после 93 циклов с добавками поверхностно-активных веществ (ПАВ) с нагревом до 540°С и образцы после 211 циклов с добавками трикрезилфосфата с нагревом до 640°С. Для сравнения исследовались образцы в состоянии поставки (без термобароциклирования).

Таблица 1. Параметры дислокационной структуры и размеров зерен в стали 10К

Состояние	феррит	d _{ер} , мкм перлит	а _{ф,} мкм средн	Р _V перлит	Fе ₃ С выч из Р _V	р 10°, см² общая	р·10 ⁻⁹ , см ⁻² перлит	р. 10-9, см ⁻² феррит
исх.	12,85	8,24	11,64	0,16	0,032	3,9	2,2	5,6
после 5 лет	14,63	4,63	14,23	0,05	0,009	4,9	3,3	6,7

На металлографических изображениях стали 12X1МФ после 93 циклов с добавками ПАВ видно, что границы зерен более изогнуты, чем в исходном состоянии. Зерна перлита неоднородно распределены по образцу (рис. 1). Объемная доля перлита уменьшилась, что указывает на идущие при термобароциклировании фазовые превра-

щения и перераспределение углерода. Происходит разрушение пластин цементита в теле зерна перлита, одновременно происходит образование частиц цементита по границам зерен. В теле исходного зерна наблюдается зарождение нового зерна. После увеличения циклов до 211 с добавками трикрезилфосфата наблюдается некоторое уменьшение размеров перлитных зерен. Средний размер зерен по сравнению с размерами в исходном состоянии возрос, а по сравнению с состоянием после 93 циклов — уменьшился. Объемпая доля перлита также уменьшилась по сравнению с исходным состоянием и с образцами, прошедшими 93 цикла.

Рыс. 1. Металлографическое изображение поверхности стали $12X1M\Phi$ после термоциклирования. Стрелками указаны границы зерен. Темные зерна-зерна перлита, светлые – зерна феррита: a – исходное состояние, b – после 93 циклов, b – после 211 циклов.

Из вышесказанного следует, что изменение размера зерен после 211 шиклов связано с более интенсивной рекристаллизацией зерен. Это происходит потому, что циклирование проводилось при более высокой температуре. Можно предположить, что меньший размер перлитных зерен после 211 циклов связано с тем, что по границам зерен выстраиваются частицы карбидов, появившиеся вследствие распада перлита и из-за диффузии углерода при распаде органических загрязнителей. Образовавшиеся частицы карбидов могут препятствовать росту зерен [3].

Электронно-микроскопические исследования показывают, что в исходном состоянии и после 93 циклов структура цементитных колоний несовершенна, а после 211 циклов цементитные колонии разрушаются. Одновременно уменьшается объемная доля частиц цементита на границах зерен. Они распределены внутри и по границам зерен. Вместо цементита в стали формируются частицы специальных карбидов. Это карбиды Fe(Cr₂₃C₆), VC, V₆C. В исходном состоянии плотность этих карбидов меньше и меньше их размеры.

Таблица 2. Параметры дислокационной структуры стали 12Х1МФ

Состоя	р×10 ⁻⁹ , см ⁻² (общая)	р×10 ⁻⁹ , см ⁻² , перлит	р×10 ⁻⁹ , см ⁻² , феррит	ρ×10 ⁻⁹ , см ⁻² , сетчатая	р×10 ⁻⁹ , см ⁻² , ячеистая	Р _V , сетча- тая	Р _{V.} ячеистая
Исх.	3,6	3,3	4,0	3,9	3,1	0,65	0,35
N = 93 циклов	3,4	3,0	3,7	3,2	3,5	0,85	0,15
N =211 циклов	2,9	2,2	3,5	3,5	1,8	0,80	0,2

Обнаружены следующие типы дислокационных субструктур (ДСС): сетчатая, ячеистая и ячеисто-сетчатая. Основным типом субструктуры во всех исследуемых образцах является сетчатая. Количественные данные параметров дислокационных субструктур приведены в таблице 2.

Список литературы

- Пискаленко В.В., Громов В.Е., Козлов ЭВ. и др. Эволюция структурно-фазового состояния и механических свойств котельных сталей. Новокузнецк. СибГИУ. 2002. 207с.
- Пискаленко В.В., Данилов В.И., Зуев Л.Б. и др. Деградация структуры и свойств теплостойких котельных сталей в процессе эксплуатации энергетического оборудования // Известия вузов. Черная металлургия. 2002. №6. С.60-62.
- Процессы, протекающие в стали 12Х1МФ при бароциклической обработке / Конева Н.А., Локотко Е.Ю., Тришкина Л.И., Пискаленко В.В. и др. // Известия вузов Физика. 2002. №3. С.24-33.

ТЕПЛОПРОВОДНОСТЬ БИОМОРФНЫХ КОМПОЗИТОВ SiC/Si – НОВЫХ ЭКОКЕРАМИК КАНАЛЬНОГО ТИПА

Парфеньева Л. С., Смирнов Б. И., Смирнов И. А., Misiorek H. *, Jezowski A. *, Varela-Feria F.M.**, Martinez-Fernandez J.**, de Arellano-Lopez A.R.**

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
* Institute of Low Temperature and Structure Research Polish Academy of Sciences,
50-950 Wroclaw 2, Poland.
** Universidad de Sevilla, 41080 Sevilla, Spain.

igor.smirnov@pop.ioffe.rssi.ru

В интервале 5-300 К измерены теплопроводность (æ) и электропроводность (σ) биоморфной экокерамики SiC/Si, приготовленной на основе пористой канальной углеродной матрицы, полученной из дерева (белого эвкалипта) с помощью пиролиза его в атмосфере аргона при 1000°C, с последующей затем инфильтрацией в вакууме в каналы матрицы расплавленного Si.

Из рентгеноструктурных данных и измерения плотности композита SiC/Si следует, что в исследованном образце содержалось примерно 6% Si и \sim 15÷20 объемных процентов пустых каналов, причем карбид кремния имел кубическую модификацию (3C-SiC). \approx и σ измерялись вдоль роста дерева (вдоль пустых и заполненных Si каналов).

Проводится теоретический анализ полученных экспериментальных результатов и сравнение их с литературными данными для некислородных керамик, используемых для практических целей.

Работа выполнялась при поддержке Российского фонда фундаментальных исследований (грант № 04-03-33183) и министерства науки и технологии Испании (Projet MAT 2003-05202-C02-01)