ИССЛЕДОВАНИЕ ПРОЦЕССА ШТАПЕЛИРОВАНИЯ ПОЛИЭФИРНЫХ МИКРОВОЛОКОН СПОСОБОМ ДИФФЕРЕНЦИРОВАННОГО РАЗРЕЗАНИЯ С НЕКОНТРОЛИРУЕМЫМ РАЗРЫВОМ

А.А. Баранова, А.Г. Коган

В последние годы в мировой практике наблюдается устойчивая тенденция развития производства полиэфирных микрофиламентных нитей текстильного назначения и волокон. Уже в 80-х годах ведущие фирмы мира приступили к выпуску полиэфирных нитей с линейной плотностью элементарной нити менее 0,1 текс.

Полиэфирные микроволокна линейной плотности 0,07-0,08 текс, выпускаемые Могилевским ПО «Химволокно», появились на сырьевом рынке республики недавно. Эти волокна значительно тоньше используемых натуральных и химических волокон, их переработка на существующем оборудовании связана с рядом трудностей и недостаточно изучена.

Практика широкого использования химических волокон в текстильной промышленности показала, что при выработке пряжи из химических волокон и их смесей с натуральными волокнами наиболее эффективной является технология, основанная на применении жгутовых химических нитей вместо штапельных волокон. Все ранее разработанные технологии касаются штапелирования жгутов, состоящих из элементарных нитей линейной плотности 0,17 текс и больше.

На кафедре «Прядение натуральных и химических волокон» УО «ВГТУ» разработана сокращенная технлогия подготовки полиэфирных микроволокон к прядению, которая позволит исключить такие трудоемкие процессы как разрыхления, трепания и кардочесания. Ленту из полиэфирных микроволокон предлагается получать путем штапелирования жгутов способом дифференцированного разрезания с последующим неконтролируемым разрывом. Смешивание микроволокон с другими видами волокон целесообразно осуществлять на ленточных машинах.

Штапелирование полиэфирных жгутов, состоящих из элементарных микронитей, предлагается осуществлять на резально-штапелирующей машине ЛРШ-2-40, что позволит перерабатывать ленту из микроволокон на хлопкопрядильном оборудовании.

Штапелированная лента после разально-штапелирующей машины содержит некоторую долю длинных волокон. Чтобы разорвать наиболее длинные волокна и тем самым улучшить условия протекания процесса вытягивания на всех последующих переходах, после резально-штапелирующей машины необходимо использовать смешивающую машину СМ-2-40. При использовании этой машины снижается неровнота ленты по линейной плотности, неровнота волокон по длине и разрываются волокна, имеющие длину выше заданной.

Работа резально-штапелирующей машины ЛРШ-2-40 основана на способе штапелирования дифференцированным разрезанием. Это достигается при помощи спирального ножевого вала с радиальными пазами по образующей режущей кромке, имеющей острую заточку. Первоначально осуществляется процесс дифференцированного разрезания нитей жгута на волокна длиной от $I_{\text{шт}}$ до $nI_{\text{шт}}$, где n=1,2,3.... Наряду с этим некоторая часть нитей жгута, попавших в радиальные пазы спиралей ножевого вала, разрывается в результате натяжения и под воздействием острых выступов радиальных пазов. В данном случае происходит контролируемый разрыв нитей жгута. При поступлении холста в зоны вытягивания машины волокна длиной, превышающей расчетную длину резки $I_{\text{шт}}$, должны быть разорваны способом неконтролируемого разрыва. Поэтому все три способа штапелирования (некон-

тролируемый разрыв, контролируемый разрыв и резание) являются составными элементами способа дифференцированного разрезания.

Для использования штапелированной ленты из химических волокон в смеси с натуральными длину штапелированных волокон рекомендуется выбирать по условию

$$I_{\text{mr}} = I_{\text{cp}} + \sigma_{\text{r}}$$

где Ішт - длина резки жгутового волокна, мм;

 l_{cp} - средняя длина натуральных волокон, мм;

среднее квадратичное отклонение по длине натуральных волокон, мм.

Для расчета необходимой длины штапелированных полиэфирных микроволокон в смеси с тонковолокнистым хлопком была исследована длина волокон в гребенной ленте. Результаты штапельного анализа хлопчатобумажной ленты показали, что длина штапелированных полиэфирных микроволокон должна составлять

$$I_{uit} = 40-41 \text{ MM}$$

Заданную длину штапелирования волокон позволяет осуществлять ножевой вал со следующими параметрами:

диаметр (по режущей кромке) $d_{HB} = 117.5 \text{ MM}$ m = 9число заходов спиралей t = 3.4 MMшаг зубьев (пазов) a = 3,83 MMширина зуба b = 0.17 MMширина паза h = 4.5глубина паза 4023 угол подъема спирали 30^{0} конусность режущей кромки

После дифференцированного разрезания жгутов холстик подвергается вытягиванию при помощи вытяжных пар. В результате осуществляется дифференцированный сдвиг волокон в штапелях и продукт утоняется, а также укорачиваются длинные волокна, имеющие длину $2l_{\text{шт}}$ и более. При девятизаходном ножевом вале длина неразрезанных волокон может находиться в пределах от $2l_{\text{шт}}$ до $8l_{\text{шт}}$.

Пять вытяжных пар образуют четыре зоны разрыва, где происходит постепенное укорачивание волокон, разрезанных ножевым валом на отрезки длиной $2l_{\text{шт}}$, $3l_{\text{шт}}$, $4l_{\text{шт}}$ и более таким образом, что между вытяжными парами разрываются волокна, длина которых больше разводки между двумя смежными парами. Так, например, между 1-й и 2-й вытяжными парами разрываются волокна, длина которых более $2l_{\text{шт}}$, между 2-й и 3-й - волокна длиной, превышающей $l_{\text{шт}}$ в 1,5 раза и более; между 3-й и 4-й - волокна, длина которых превышает $l_{\text{шт}}$ в 1,2 раза; между 4-й и 5-й - волокна длиной, превышающей заданную, т.е. $l_{\text{шт}}$.

Исходя из заданной длины штапелированных волокон, а также коэффициента вариации волокон по длине в штапелированной ленте были выбраны разводки и вытяжки между разрывными парами.

Минимальную и максимальную длину штапелированных волокон определяют по следующим формулам [1]:

$$\ell_{\text{шт.макс}} = R \frac{E - I}{E - 1 - \epsilon_p};$$

$$\ell_{\text{шт.мин}} = \frac{E \epsilon_p R}{(1 + \epsilon_p)(E - 1 - \epsilon_p)};$$

где R - разводка между разрывными парами;

 ϵ_{p} - разрывное удлинение волокон;

Е - вытяжка между разрывными парами.

Используя теоретические предпосылки, можно определить максимальную и минимальную длину полиэфирных микроволокон в зонах разрыва при заданных параметрах заправки резально-штапелирующей машины ЛРШ-2-40. Результаты расчета представлены в таблице 1.

Таблица 1 - Заправочные параметры машины ЛРШ-2-40

 Вытяжные пары по ходу продукта	Вытяжка, Е	Разводка, R, мм	I _{шт.макс} , ММ	I _{шт.мин} , мм
I-II (1 зона)	1,62	$2I_{\text{mr}} = 82$	137,4	71,8
II-III (2 зона)	1,70	$1,51_{\text{mt}} = 62$	96,4	46,8
III-IV (3 зона)	1,77	$1,2l_{\text{mt}} = 49$	72,6	33,4
IV-V (4 зона)	1,85	<i>I</i> _{ωτ} = 41	58,1	25,3

Длина штапелированных волокон при неконтролируемом разрыве рассчитана с учетом максимального разрывного удлинения полиэфирных микроволокон - 25%.

Штапелирование опытного полиэфирного жгута осуществлялось на Светлогорском ПО «Химволокно» на резально-штапелирующей машине ЛРШ-2-40. По физико-механическим показателям опытный полиэфирный жгут отвечает требованиям ТУ РБ 00204079.155-96 «Волокно полиэфирное линейной плотности 0,07 текс».

Результаты исследований по рассортировке волокон в штапелированной полиэфирной ленте в сравнении с гребенной хлопчатобумажной лентой представлены в таблице 2.

Штапельный анализ полиэфирной ленты после машины ЛРШ-2-40 показал, что средняя длина волокон составляет 40,53 мм при расчетной длине резки 41 мм. Наибольшее количество волокон в ленте (31,73%) имеет длину 35-39 мм, отклонение от средней длины волокон не превышает 7,73 мм. Штапельная длина волокон составляет 44,67 мм, так как в ленте имеется 24% волокон с длиной превышающей 45 мм. Максимальная длина волокон составляет 64 мм. Короткие волокна в штапелированной ленте отсутствуют, минимальная длина волокон составляет 25 мм. Средняя массодлина волокон совпадает со штапельной массодлиной и составляет 42 мм.

Штапелированная лента после смешивающей машины СМ-2-45 характеризуется хорошей равномерностью по длине волокон: коэффициент вариации составляет 14,23 %. Наибольшее количество волокон имеют длину 33-37 мм, что соответствует базовой длине волокон хлопка. Штапельная длина волокон хлопка и полиэфирных микроволокон также совпадает. Короткие волокна в штапелированной ленте отсутствуют, а количество волокон, превышающих максимальную длину волокон хлопка составляет 3,36%. Полученные результаты позволяют сделать вывод о возможности совместной переработки полиэфирных микроволокон с тонковолокнистым хлопком на ленточных машинах.

Таблица 2 - Результаты штапельного анализа полиэфирной и хлопчатобумажной ленты

Показатель	Еди- ница изме- рения	Значение		
		ЛРШ-2-40	CM-2-45	Гребен.
1	2	3	4	5
Вид волокна		п/эф	п/эф	х/б
Линейная плотность ленты	ктекс	6,5	4,95	3,7
Коэффициент вариации по линейной плот- ности ленты метровыми отрезками	%	17,6	6,7	2,8
Линейная плотность волокон	текс	0,078	0,078	0,125
Заданная длина резки волокон	ММ	41		
Средняя длина волокон	ММ	40,53	35,06	31,55
Отклонение заданной длины от средней длины волокон	%	1,15	E 1 = 1 11	T.
Среднее квадратическое отклонение по длине волокон	мм	7,73	4,99	6,39
Коэффициент вариации по длине волокон	%	19,07	14,23	20,26
Модальная длина волокон	ММ	35-36	36	37
Штапельная длина волокон	ММ	44,67	39,5	39,22
База (ЛРШ-35-39 мм; СМ, гребнеч: 33-37 мм)	%	31,73	54,1	36,64
Содержание коротких волокон (до 20 мм)	%	0	0	9,17
Содержание длинных волокон (более 45 мм)	%	23,98	3,36	44
Средняя массодлина волокон	ММ	41,98	35,74	33,58
Модальная массодлина волокон	ММ	36	36	37
Штапельная массодлина волокон		41,61	41,33	39,26

Из полученной ленты было выработано несколько вариантов пряжи линейной плотности 10, 11,8 и 15,4 текс пневмомеханическим способом прядения. По физикомеханическим свойствам полиэфирная пряжа соответствует требованиям стандарта на хлопчатобумажную пряжу кольцевого способа прядения.

Литература

- 1. Слываков В.Е. Рациональные методы переработки химических волокон. М.: Легпромбытиздат, 1990.- 144с.: ил.
- 2. Кукин Г.Н., Соловьев А.Н., Кобляков А.И. Текстильное материаловедение (волокна и нити): Учеб. для вузов. 2-е изд., перераб. и доп. М.: Легпромбытиздат, 1989. 352с.:ил.

SUMMARY

The stapling process of polyester tows, consisting from filaments of linear density 0,08 tex by the machine ЛРШ-2-40 is investigated. The knifing parameters of the shaft and zone of stretch-break are established which will allow to process a stapled sliver from microfibres by the cotton-spinning equipment. The process of formation of a polyester sliver by the tape mixing machine CM-2-45 is investigated. Some variants of a OE-spun polyester and cotton-polyester yarn of linear density 10, 11,8 and 15,4 tex of the received sliver are made. The received yarn meets the requirements of the standard.