НЕКОТОРЫЕ ОСОБЕННОСТИ РАЗРУШЕНИЯ В ЖИДКИХ СРЕДАХ ВЯЗКОУПРУГИХ ТЕЛ С ТРЕЩИНАМИ

В.М. Пестриков

Санкт-Петербургский Государственный Технологический Университет растительных полимеров.
198092. С-Петербург, ул. Ивана Черныха 4.

<u>vpest@comset.net</u>

Представлен анализ результатов экспериментов по исследованию особенностей изменения механических характеристик полимерных пленок и стеклопластиков в различного типа агрессивных средах. На основании полученных экспериментальных данных получены уравнения роста трещины в вязкоупругих материалах, находящихся в условиях воздействия жидких агрессивных сред.

1. Основные положения

Разрушение твердых тел с трещинами, материал которых изменяет свои свойства под влиянием различных факторов (внешних или внутренних), представляет очень сложный процесс, скорость и характер которого определяются напряженным состоянием и природой внешних воздействующих факторов [1,2]. Процесс разрушения напряженных твердых тел с трещинами под воздействием внешних факторов значительно отличается от разрушения на воздухе или в вакууме. В реальных условиях эксплуатации конструкции и их составляющие элементы редко работают в условиях близких к нормальным, когда происходит естественное изменение свойств (старение) материалов. Гораздо чаще они испытывают комплексное воздействие внешних факторов, среди которых следует отметить агрессивные среды (жидкие и газообразные), температуру окружающей среды, климатические условия и др. Действие указанных факторов в большинстве случаев негативно сказывается на долговечности материалов, что приводит в итоге их к разрушению. Кинетика разрушения в этом случае определяется процессами, связанными с изменением напряжений в зоне предразрушения и характером взаимодействия материала и среды. Процессы такого взаимодействия могут быть поверхностные, объемные, физические, химические, а также связанные с растворением и набуханием материала. Как показывают эксперименты, набухание или поверхностное растворение могут быть причиной упрочнения или повышения трещиностойкости материала. В настоящее время нет достаточно общей модели разрушения вязкоупругих тел со свойствами, изменяющимися под влиянием внешних факторов, которая была бы пригодна для практических целей. В связи с этим возникает потребность в построении модели разрушения вязкоупругих тел, которая позволила бы прогнозировать долговечность тел с трещинами с учетом воздействия внешних факторов.

2. Экспериментальные исследования

Выявление специфических особенностей изменения механических свойств вязкоупругих материалов, связанных с воздействием различных внешних факторов на долговечность тела под нагрузкой представляет значительный как теоретический, так и практический интерес. Сведений о воздействии внешних факторов на характеристики деформативности и длительной трещиностойкости вязкоупругих материалов имеется недостаточно. В связи с этим были проведены экспериментальные исследования по влиянию различного типа реальных сред на деформативность и длительную трещиностойкость различных по своей природе материалов, полимеров и композитов на их основе.

- 2.1. Разрушение пленочных вязкоупругих материалов под влиянием жидких сред и температуры. Долговечность вязкоупругих материалов определяется в основном реальными условиями эксплуатации. Так, на газопроводах большого диаметра при температурах 333К...353К довольно часто защитное полимерное покрытие под действием собственного веса сползает, образуются складки и разрывы. В задаче о выборе покрытия заранее неизвестно, какое именно свойство является определяющим. Поэтому в таких задачах необходимо исследовать комплекс прочностных, деформационных и других свойств полимерных материалов. Для сокращения продолжительности испытаний следует определить характеристику наиболее чувствительную к изменению свойств [3]. Такой подход дает возможность оценить стабильность материалов в условиях воздействия внешних факторов. Применительно к пленочным вязкоупругим полимерным покрытиям, используемым для защиты трубопроводов от коррозии, чувствительными характеристиками являются:
- функция ползучести (отношение плоской деформации к постоянному напряжению как функции времени);
- 2) предел прочности;
- 3) максимальное значение деформации при кратковременном растяжении.

Исследование разрушения пленок при наличии трещины (надреза) показало, что они нечувствительны к надрезам, в связи с чем основное внимание было уделено перечисленным характеристикам.

Закономерности изменения механических свойств пленочных материалов, в кислотных и щелочных растворах при нормальной и повышенной температуре, исследовались на четырех марках полимерных покрытий. Основным требованием, предъявляемым к эксплуатационным свойствам покрытий, является их стойкость к деструкции вследствие изменения механических свойств в течение срока эксплуатации (25 лет). Объектом исследования были выбраны полимерные пленки четырех типов:

- 1. пластикат 54-40 на основе поливинилхлорида, ТУ-6-05-1146-75, толщиной 3,5 мм;
- 2. двухслойная пленка на основе полиэтилена с одним адгезионным слоем, толщиной 2 мм;
- 3. пленка марки «ПОЛИКЕН» 980-25, толщина 2 мм;
- 4. пленка FG-21, толщиной 2,1 мм (производство Германии).

Ширина рабочей части образцов составляла 10 мм, длина в случае испытания на ползучесть 120 мм, а на кратковременное растяжение - 60 мм. Выбранные внешние среды моделировали составы почвенных вод в различных географических зонах. Образцы подвергались воздействию следующих внешних факторов. Воздушная среда при температуре 353К, 1% раствор каустической соды при 353К, 1% раствор каустической соды при 293К, 1% раствор каустической соды при 293К, 1% раствор каустической соды при 293К, 1% раствор Н₂SO₄ при 293К. Испытания на кратковременную ползучесть проводили на испытательной машине МР-0,5, цена деления силоизмерительного устройства которой 0,2 кг, точность определения нагрузки − не менее 1% от измеренной величины. Испытания на ползучесть проводились на машине 257-3, снабженной специальной ванной и устройством для быстрого нагружения [4]. После определенного промежутка времени образцы вынимали из растворов или из термостата, вытирали, высушнвали и выдерживали при 293К в течение 1-3 суток. В данном исследовании повышенная температура использовалась в качестве средства ускорения процесса изменения свойств исследуемых материалов. Каждому виду испытаний подвергали не менения свойств исследуемых материалов. Каждому виду испытаний подвергали не менения свойств исследуемых материалов.

нее 3-х образцов. В некоторых случаях образцы испытывали повторно после отдыха при температуре 333К в течение не менее 2 часов и остывания в течение 2-х –3-х часов.

Анализ результатов исследований и выводы. Влияние старения на механические характеристики в соответствии с ГОСТ 9.707-81 оценивалось показателем η_{ϕ} равным отношению значения механической характеристики материала после воздействия указанных выше факторов к ее значению в исходном состоянии. Обнаружено следующее изменение функции ползучести вследствие влияния различных факторов.

После длительного теплового старения на воздухе изменение функции ползучести составило для пластиката 54-40 η_{ϕ} = 1, для «ПОЛИКЕНА» η_{ϕ} =1,7, для пленки FG-21 η_{ϕ} = 0,6. 1% раствор H₂SO₄ при 293К качественно на ползучесть оказывает такое же влияние, как и тепловое старение. Влияние 1% раствора каустической соды при 293К также аналогично. Несколько большее влияние раствора серной кислоты проявляется для двухслойной пленки η_{ϕ} = 1,3, однако, учитывая высокую концентрацию раствора, этим влиянием можно пренебречь.

Проведенный эксперимент показал, что наименее подвержена изменению свойств двухслойная пленка. Воздействие активных сред и температуры зависит от характеристики ползучести, предела прочности, деформации на разрыв и марки полимерного материала. Анализ кривых ползучести показывает, что деформирование исследованных полимеров в условиях воздействия рассмотренных жидких сред и температуры может быть описано линейной теорией вязкоупругости. Ядра ползучести должны содержать реологические параметры, зависящие от ускоряющего фактора (температуры, концентрации раствора среды и т.п.), который должен быть подобран так, чтобы соблюдался принцип соответствия. При завышении значений этого фактора физический процесс изменения свойств может перейти в химическое взаимодействие среды и полимера с образованием нового типа материала. Рассмотренные среды по отношению к исследованным материалам являются инактивными, так как практически все основные механические характеристики материалов зависят от воздействия внешней среды.

2.2. Разрушение стеклопластиков в условиях длительного воздействия повышенной температуры. Этот тип вязкоупругих материалов все больше используют при изготовлении ответственных элементов конструкций, работающих в различных условиях эксплуатации. Особенно это характерно для авиации, где наметилась тенденция к широкому использованию стеклопластиков. Элементы конструкции самолета работают в сложных условиях при совместном воздействии нагрузок и внешних факторов. С целью установления закономерностей разрушения стеклопластиков, используемых в авиации, были смоделированы реальные внешние воздействия. Исследовалось влияние воды при температуре 353К в течение 1 месяца и при температуре 333К в течение 2 месяцев на механические характеристики стеклопластиков двух типов: (1) СТ-1 (стеклоткань Т-13, 5 слоев, связующее ВС0-200); (2) СТ-2 (стеклоткань Т-10-80, 2 слоя, связующее 5-211-Б). Исследовалось изменение характеристик прочности, деформативности и трещиностойкости. Для исследования изменения предела прочности σ_b и принудительной деформации при растяжении \mathcal{E}_p испытывались образцы размером 194х23х1,45 мм, изготовленные из материала СТ-1. Испытания образцов проводились в исходном состоянии и в условиях искусственного старения. Для каждого вида испытаний бралась партия образцов из 3 штук. Испытания проводились на разрывной машине при скорости движения захватов 22мм/мин.

Уменьшение $\overline{\sigma}_b$ по основе в течение одного месяца при T=353К составило 31%, аналогичный эффект наблюдается при уменьшении температуры до 333К и 313К и увеличении длительности воздействия до двух месяцев соответственно на 49,6% и

55,9%. При этом по утку $\overline{\sigma}_b$ уменьшилось на 28%. Значения предельных деформаций $\overline{\epsilon}$ в течение одного месяца при T=353К уменьшились как по основе так и по утку на 57% и 10% соответственно. Модуль Юнга \overline{E} для стеклопластика СТ-1 за 1 месяц при T=353К уменьшился по основе на 21,2% ,а по утку — на 46%. Относительный сдвигу материалов возрос для СТ-1 в 3 раза, а для СТ-2 в 1,3 раза. Модуль сдвига \overline{G} у стеклопластика СТ-1 уменьшился в 3,5 раза, а у СТ-2 на 27%.

Критическое значение коэффициента интенсивности напряжений K_{lc} определялось на образцах с центральной трещиной. Образцы из стеклопластика СТ-1 имели размер 245x60x1,45 мм и трещину длиной 19 мм, а из СТ-2 — 175x35x0,51мм с длиной трещины 10мм. Экспериментальные данные показывают, что критическое значение коэффициента интенсивности напряжений K_{lc} после теплового воздействия в течение одного месяца уменьшилось у СТ-1 на 30%, а у СТ-2 на 11%.

Анализ изменения значений рассмотренных механических характеристик стеклопластиков двух типов показывает, что при определенных условиях, в результате воздействия температуры определенного уровня на временной базе, значительно меньшей долговременного срока эксплуатации материала, следует учитывать влияние на них интенсивности воздействия внешних факторов. В результате такого воздействия материал будет обладать такими механическими параметрами, какие бы он имел при нормальных условиях, в результате длительного естественного старения. Уменьшение трещиностойкости и других механических характеристик стеклопластика в первую очередь можно объяснить проникновенеме в стеклонапонитель материала, родственной по физической природе жидкости, что приводит к уменьшению удельной поверхностной энергии материала. Рассмотренная среда по отношению к данному типу стеклопластиков может быть классифицирована как активная. Ее воздействие во времени изменяет основные механические характеристики материала, что должно быть учтено при определении долговечности элементов конструкций из стеклопластиков.

3. Уравнения роста трещин в вязкоупругих телах в условиях жидких сред.

Уравнение роста трещины в вязкоупругих материалах с изменяющимися свойствами под влиянием внешних факторов, полученное на основе энергетического критерия, представляет интегро-дифференциальное уравнение достаточно сложной структуры, и его решение представляет большие математические трудности [5-7]. Для преодоления этих трудностей без существенной потери общности решения можно все среды по отношению к вязкоупругому материалу разбить условно на три основные группы: инактивные, активные и поверхностноактивные.

3.1. Разрушение вязкоупругих тел в инактивной среде. Влияние инактивной среды в основном отражается на механизме разрушения в зоне предразрушения, которое происходит вследствие изменения свойств самого материала. Для таких сред соответствующие константы в уравнении роста трещины должны зависеть от некоторого параметра, отражающего свойства внешней среды. Энергетический критерий в вариационной форме разрушения вязкоупругого тела в инактивной среде, полученный с использованием модели трещины с тонкой структурой концевой зоны при ее докритическом развитии, имеет вид [8]

$$\delta\left\{2\gamma(\Psi)\cdot l(t) + \int_{I(t)}^{L(t)} \sigma_0(\Psi)u_2(x_1,0,\Psi)dx_1\right\} = 0,$$
(1)

где δ – оператор варьирования, γ – удельная поверхностная энергия разрушения, зависящая от внешнего фактора Ψ , σ_0 – нормальные напряжения в вершине трещины, согласно принятой модели трещины; l(t) – текущая длина трещины, L(t) = l(t) + d(t); d(t) – величина зоны предразрушения.

Исходя из (1), после преобразований получим уравнение докритического роста трещины при действии постоянной нагрузки в виде:

$$\left(\frac{K_{I}^{*}(\Psi)}{K_{I}}\right)^{2} = 1 + \frac{d(\Psi, t)}{l(t)} \int_{0}^{1} R \left(\frac{d(\Psi, t)}{l(t)} \cdot s\right) F(s) ds.$$
 (2)

где K_I и K_I^* соответственно – текущее и критическое значение коэффициента ин-

тенсивности напряжений, $\tilde{l}(t)$ — скорость роста трещины; $d(\Psi,t)$ — длина зоны предразрушения как функция фактора влияния Ψ ; R — ядро ползучести вязкоупругого материала; $\Psi = \Psi(C,D,T,f)$ — фактор влияния; C — коэффициент концентрации инактивной среды в единице объёма образца; D — коэффициент диффузии; T — температура среды; f — коэффициент учитывающий другие характерные особенности системы среда - материал.

3.2. Разрушение вязкоупругих тел в поверхностноактивной среде. Анализ проведенных экспериментальных исследований показывает, что поверхностно-активные среды влияют в основном на разрушающую нагрузку. При этом воздействие среды проявляется в поверхностном взаимодействии с материалом, когда успевает произойти лишь хемосорбция, а иногда даже только обратимая физическая адсорбция. Эти среды в первую очередь влияют на характер разрушения через дефекты структуры, главным образом вследствие изменения свойств материала в окрестности остроконечных пустот (трещин) в деформированном материале. Именно в окрестности вершин дефектов типа трещин воздействие среды приводит к изменению сопротивления материалов распространению в нем трещины — то есть происходит изменение его трещиностойкости, а, значит, и его характеристик статической и усталостной прочности. При этом происходит снижение величины удельной поверхностной энергии, идущей на образование новых поверхностей. Условие (1) в этом случае имеет вид

$$\delta \left\{ 2\gamma \cdot l(t) + \int_{l(t)}^{L(t)} \sigma_0(\Psi) u_2(x_1, 0, t) dx_1 \right\} = 0$$
 (3)

Из (3) после преобразований получим уравнение роста трещины в вязкоупругом материале при воздействии поверхностно-активной среды в виде.

$$\left(\frac{K_I^*}{K_I}\right)^2 = 1 + \frac{d(\Psi)}{\frac{1}{l(t)}} \int_0^1 R \left(\frac{d(\Psi)}{\frac{1}{l(t)}} \cdot s\right) F(s) ds, \tag{4}$$

где K_I^* не зависит от влияния среды, а длина зоны предразрушения $d=d(\Psi)$ и нормальные напряжения в ней $\sigma_0-\sigma_0(\Psi)$ зависят от внешнего фактора, изменяющего разрушающую нагрузку.

3.3. Разрушение вязкоупругих тел в активной среде. При воздействии активной среды происходит охрупчивание или упрочнение материала лишь по истечении некоторого (иногда весьма длительного) промежутка времени. Это происходит за счет локальных физико-химических процессов взаимодействия «материал-среда» в конце трещины. При этом приложенное напряжение облегчает доступ среды в вершину трещины, так как происходит ёе раскрытие. Условие (1) имеет вид

$$\delta \left\{ 2\gamma(\Psi(t)) \cdot l(t) + \int_{l(t)}^{L(t)} \sigma_0(\Psi(t)) u_2(x_1, 0, \Psi(t)) dx_1 \right\} = 0$$
 (5)

В этом случае уравнение роста трещины в вязкоупругом материале, находящемся в активной жидкой среде, можно записать в виде

$$\left(\frac{K_I^*(\Psi(t))}{K_I}\right)^2 = 1 + \frac{d(\Psi(t))}{i(t)} \int_0^1 R\left[t, t - \frac{d(\Psi(t))}{i(t)} \cdot s\right] F(s) ds$$
 (6)

RMBORK

Полученные уравнения докритического роста трещины в вязкоупругом теле, находящемся в условиях воздействия жидких сред различного типа, позволяют оценить долговечность тела в условиях эксплуатации [8]. Входящие в эти уравнения механические характеристики, определяются из соответствующих базовых экспериментов.

Список литературы

- Пестриков В.М. Экспериментальное исследование прочности и трещиностойкости полимерных покрытий в условиях старения материала. Тез. докл. IV науч.-техн. конф. "Совершенствование эксплуатации и ремонта корпусов судов". – Калининград. ЦНТИ. 1986. С. 86.
- Пестриков В.М., Урбанский С.В. Изменение характеристик прочности и трещиностойкости полистирола в условиях старения. Тез. докл. Всесоюзной науч.-техн. конф. "Совершенствование технической эксплуатации корпусов судов"- Ленинград: Судостроение. 1989. С. 157-158.
- Пестриков В.М. Прогнозирование механических характеристик стареющих вязкоупругих материалов // Заводская лаборатория. Диагностика материалов, 1998. № 9. С.56-59.
- Пестриков В.М. Установка для определения характеристик длительной трещиностойкости материалов в жидких средах// Заводская лаборатория. Диагностика материалов. 1998. № 11. С. 62-63.
- Лестриков В.М. О некоторых закономерностяях деформирования и длительной трешиностойкости вязкоупругих материалов в условиях естественного старения// Изв. РАН. Механика твердого тела. 1998. № 5. С.137-145.
- Пестриков В.М. О критериях разрушения вязкоупругих тел в условиях старения материала// Изв. РАН. Механика твердого тела. 1999. № 3. С. 86-96.
- Пестриков В.М. Об определяющих соотношениях стареющих материалов с учетом протекающих физико-химических процессов// Изв. РАН. Механика твердого тела. 1999. № 4. С. 134-140.
- Пестриков В.М. Оценка долговечности вязкоупругих материалов с изменяющимися свойствами методами механики разрушения// Заводская лаборатория. Диагностика материалов. 1999. № 12. С.34-38.