УДК 669.295'24:669.017.3.

МАРТЕНСИТНЫЕ ПРЕВРАЩЕНИЯ В СПЛАВЕ TINI ПРИ ОХЛАЖДЕНИИ ПОД НАГРУЗКОЙ

The startery

М. Е. Евард, С. А. Егоров, Н. Н. Реснина

НИИ Математики и Механики Санкт—Петербургского Государственного Университета 198904, С.—Петербург, Библиотечная пл., 2 E-mail: rita@smel.math.spbu.ru

Проведено систематическое изучение изменений электросопротивления и деформации кручения в сплаве Ti – 49.5 ат. % Ni при охлаждении под постоянной нагрузкой. Величину приложенных напряжений варьировали от 0 до 80 МПа. Обнаружено, что неупругая деформа-

ция накапливается до начала $B2 \rightarrow R$ превращения вследствие реализации под напряжением превращения $B2 \rightarrow B19'$ и двойникования структуры B2. Показано, что уменьшение высоты пика электросопротивления, связанного с переходом $B2 \rightarrow R$, нельзя объяснить лишь различным смещением температур фазовых превращений. Обнаружено, что термоциклирование не оказывает существенного влияния на $B2 \rightarrow R$ переход.

Настоящая работа является продолжением цикла исследований по сопоставлению изменения электрического сопротивления R и деформации кручения у в сплаве TiNi во время мартенситных превращений. Поскольку фазовые переходы в этих материалах сопровождаются аномальными изменениями сопротивления, то применяемая методика позволяет судить о механизмах деформирования, действующих на различных этапах протекания эффектов мартенситной неупругости. В частности, изучение взаимосвязи механического поведения и фазовых превращений в Ti - 49.5 ат. %Ni при нагревании в интервале температур фазовых превращений показало, что в реализацию эффекта памяти формы, помимо фазового канала неупругости, значительный вклад вносит двойникование мартенсита [1], а обратимая память формы, проявляющаяся в отсутствии внешних полей напряжений, связана только с обратным превращением [2]. При охлаждении же под напряжением 0 ÷ 30 МПа в указанных работах наблюдали хорошее соответствие между температурами фазовых переходов и аномалиями на кривой деформации. Вместе с тем, имеется ряд экспериментальных исследований [3, 4, 5], показывающих, что достаточно большие напряжения, действующие на сплав TiNi, претерпевающего двухстадийное $B2 \to R \to B19'$ превращение, приводят к частичному подавлению B2 — R перехода. Авторы [5] объясняли наблюдаемое уменьшение пика

электрического сопротивления, связанного с этим превращением, тем, что напряжения неодинаково смещают температуры начала $B2 \rightarrow R(T_R)$ и $B2 \rightarrow B19'$ (M_H) переходов. Однако систематического исследования влияния напряжений на особенности протекания мартенситных превращений и механизмов деформирования не проводилось. Такая попытка предпринята в данной работе.

В качестве объекта исследования был выбран сплав Ti – 49.5 ат. % Ni. Два проволочных образца, обозначенных O1 и O2, с рабочей длиной 60 мм и диаметром 0,61 мм, перед проведением экспериментов отжигали при температуре 773 К в течение 40 минут, охлаждали с печью до комнатной температуры и далее (до 220 К) парами жидкого азота. После этого образец O1 был подвергнут 20 термоциклам в интервале температур от 273 К до 373 К. Экспериментальные исследования проводили в установке, описанной в [1]. Образцы O1 и O2 нагружали в аустенитном состоянии, постепенно от цикла к циклу увеличивая напряжение от 0 до 80 МПа. При каждом значении напряжения в процессе охлаждения и нагревания проводили одновременное измерение электрического сопротивления R, деформации γ и температуры T. Один из результатов экспериментов для случая $\tau = 50.5$ МПа представлен на рис. 1, где указаны характеристические температуры: начала накопления деформации при охлаждении T_{γ} ; начала роста электросопротивления при охлаждении T_{R} ; пика на кривой электросопротивления $M_{\rm H}$.

На рис. 2 представлены зависимости характеристических температур от напряжения для образца O1 (для образца O2 зависимости аналогичны). Видно, что с ростом нагрузки величины $T_{\rm R}$ и $M_{\rm H}$, отвечающие различным фазовым превращениям, смещаются с различным темпом: температура $M_{\rm H}$ увеличивается сильнее, чем $T_{\rm R}$. Кроме того, оказывается, что при любых нагрузках температура $T_{\rm Y}$ больше $T_{\rm R}$, то есть в изучаемом материале накопление деформации начинается раньше чем, $B2 \rightarrow R$ превращение. По мере увеличения величины τ разница между указанными температурами увеличивается.

Таким образом, можно выделить два этапа накопления деформации, первый из которых происходит в интервале температур $T_{\gamma} + T_{R}$, а второй в интервале температур $B2 \rightarrow R \rightarrow B19'$ превращения. На основе экспериментальных результатов для двух образцов была построена зависимость величины $\gamma^{1}_{\text{отн}}$ от нагрузки (рис. 3). Здесь $\gamma^{1}_{\text{отн}} = \gamma^{1}\gamma^{\text{ип}} \cdot 100 \%$, γ^{1} – величина деформации, накопленная в интервале $T_{\gamma} \div T_{R}$; $\gamma^{\text{ип}}$ – полная деформация, накопленная при охлаждении.

Зависимости γ^{1}_{ort} от τ для образцов О1 и О2 подобны и имеют сложный харак-

тер. Так, для образца O1 в диапазоне напряжений от 0 до 58 МПа величина $\gamma^{l}_{\sigma TH}$ практически постоянна. Превышение 58 МПа приводит к ее увеличению, так что при $\tau = 80$ МПа она достигает значения 34 %. Для образца O2 значение критического напряжения равно 65 МПа.

Рис. 3. Зависимость относительной величины деформации у¹_{отн} от напряжения для образцов 01 и 02.

Обнаруженная двухэтапность кривой деформирования может быть интерпретирована по-разному. Например возможны следующие рассуждения. Имеющиеся в литературе [3, 5] и полученные в данной работе экспериментальные результаты свидетельствуют о том, что температура M_H увеличивается с ростом напряжений сильнее, чем T_R. Кроме того, результаты рентгеноструктурного анализа [3] показывают, что под действием нагрузки последовательность превращений B2 $\rightarrow R \rightarrow B19'$ может изменяться на $B2 \rightarrow R + B19' \rightarrow B19'$. Тогда возможно, что при $T = T_{\gamma}$ в некоторых микрообъемах начинается B2 → B19' превращение. Но поскольку величина электросопротивления B19'фазы при этой температуре близка к сопротивлению B2-фазы, то на кривых R(T) могут быть не видны особенности, позволяющие судить о мартенситном переходе. Однако, если бы накопление деформации при T_R < T < T_Y было связано исключительно с протеканием $B2 \rightarrow B19'$ превращения, то следовало бы ожидать, что $\gamma^{1}_{\text{отк.}}$ с увеличением τ будет расти линейно. Однако этого не было обнаружено (рис. 3). Это позволяет сделать предположение о том, что при значительных нагрузках эффект пластичности превращения реализуется не только за счет мартенситного превращения, но и за счет иного обратимого механизма деформации. В качестве носителей такой деформации могут выступать, например, двойники в структуре В2. Теоретическая возможность двойникования в аустените, в частности, обсуждалась в работе [6], а экспериментально обнаруженные двойниковые структуры описаны в работах [7, 8].

На основании экспериментальных результатов построены зависимости высоты пика электросопротивления $\Delta R = R(M_{\rm H}) - R(T_{\rm R})$ от напряжения τ (рис. 4). Видно, что для обоих изученных образцов характер кривых одинаковый. В целом, можно сказать, что увеличение напряжений приводит к уменьшению высоты пика. Однако это уменьшение начинается лишь с некоторого порогового значения напряжения, которое для

образцов О1 и О2 составляет 29 и 21,5 МПа, соответственно. Достижение нагрузки 80 МПа приводит к уменьшению высота пика до 8 % и 5 % от того, что было при т=0.

Рис. 4. Зависимость высоты пика сопротивления AR от нагрузки для образцов OI и O2.

Поскольку $B2 \rightarrow R$ превращение приводит к увеличению электросопротивления, а $B2 \rightarrow B19'$ – к его снижению, то одной из возможных причин уменьшения величины пика ΔR с ростом приложенного напряжения является более сильное смещение температуры $M_{\rm H}$ по сравнению с $T_{\rm R}$. В частности, авторы работы [5] считают эту причину основной.

Для того, чтобы количественно оценить вклад смещения температур в уменьшение ΔR , предположим, что экспериментально наблюдаемая зависимость R(T) в интервале температур $T < T_R$ является результатом наложения двух кривых, одна из которых относится к материалу, в котором происходило бы только превращение $B2 \rightarrow R$ при температурах $M_{\rm H} < T < T_{\rm R}$, а другая — к материалу, в котором возможно только $B2 \rightarrow B19'$ переход, при $T < M_{\rm H}$. Были построены зависимости R(T), соответствующие этим модельным материалам. Для образца O1 эти кривые вместе с экспериментальной зависимостью приведены на рис. 5.

Рис. 5. Кривые сопротивления R(T), соответствующие различным фазовым превращениям и экспериментальная кривая, полученная при охлаждении без нагрузки образца O1.

Далее, кривые, отвечающие различным фазовым превращениям, были сдвинуты по температурной оси в соответствии с экспериментально полученным смещением температур $A_{\rm K}$ и $T_{\rm R}$, которое произошло при наложении максимального напряжения

80 МПа. Здесь $A_{\rm K}$ – температура, при которой заканчивается возврат деформации при нагреве и которая по данным [1] совпадает с температурой окончания обратного превращения. Настоящие исследования показали, что темп смещения этой величины сдвиговыми напряжениями равен 0,086 К/ МПа. В результате наложения двух кривых сопротивления, отвечающих различным фазовым превращениям, получена результирующая кривая. На рис. 6 эта кривая приведена вместе с соответствующей экспериментальной зависимостью. Видно сильное различие этих двух кривых: на результирующей кривой $\Delta R = 4.7$ усл. ед., что составляет 92 % от значения ΔR при отсутствии нагрузки, на экспериментальной же кривой имеем $\Delta R = 0.4$ усл. ед., т.е. 8 % от высоты пика, который наблюдался при $\tau = 0$. Кроме того, на рисунке видно, что температура $M_{\rm H}$ для результирующей кривой на 4 К меньше, чем для экспериментальной кривой.

334

Рис. 6. Кривые R(T), соответствующие напряжению 80 МПа, полученные экспериментально и в результате моделирования.

Проведенный анализ показывает, что нельзя объяснить зависимость высоты пика сопротивления ΔR от величины приложенной нагрузки одним лишь различием темпа смещения температур фазовых превращений напряжениями. Это означает, что влияние сдвиговых напряжений на B2 -> R превращение нельзя свести лишь к смещению характеристических температур. Частичное подавление сдвиговыми напряжениями перехода B2 -> R связано, как уже отмечалось ранее, с возможностью одновременного протекания $B2 \to R$ и $B2 \to B19'$ превращений при достаточно больших напряжениях. В этом случае в отдельных частях материала, в которых при отсутствие нагрузки происходило $B2 \rightarrow R$ превращение, напряжение может стимулировать $B2 \rightarrow B/9'$ переход, минуя R фазу. Вероятно, энергия напряжений т расходуется на создание двойников в высокотемпературной фазе В2 и мартенситное превращение В2 → В19'. Иными словами, действие дальнодействующих напряжений и температура относительно перехода B2 → R оказываются неэквивалентными факторами. В то же время, полученные результаты показывают, что термоциклирование и наведение тем самым неориентированных, короткодействующих напряжений не оказывает существенного влияния на переход $B2 \rightarrow R.$

Выводы работы следующие:

 Охлаждение под нагрузкой, приводит к накоплению неупругой деформации до начала B2 → R превращения. Видимо, данное явление связано с реализацией B2 → B19' перехода под напряжением, а также с двойникованием B2 структуры.

- Относительно B2 → R перехода дальнодействующие сдвиговые напряжения и температура оказываются неэквивалентными факторами.
- Неориентированные напряжения не оказывают существенного влияния на B2 → R переход.

Авторы выражают благодарность А. Е. Волкову и С. П. Беляеву за участие в обсуждении результатов.

Работа выполнена при поддержке гранта РФФИ № 99-01-00987 и грантов программы поддержки ведущих научных школ 00-15-96027 и00-15-96023.

Список литературы

- Егоров С. А., Евард М. Е. Особенности взаимосвязи механического поведения и физических фазовых и структурных превращений в сплаве TiNi // Физ. мет. и металловед. 1999. Т. 88, N 5. С. 78 – 83.
- Egorov S. A., Evard M. E. Specific features of strain and resistance variations in Ti-Ni. // Preprints of 3rd Int. Workshop on new approaches to hitech materials (7 - 11 June 1999, St. Petersburg) F22.
- Хачин В.Н., Пулин В.Г., Кондратьев В.В. Никелид титана: структура и свойства М.: Наука. 1992. 160 с.
- 4. Зельдович В. И., Собянина Т. В., Пушин В. Г., Хачин В.Н. Фазовые превращения в сплавах никелида титана. II Старение при непрерывном охлаждении // Физ. мет. и метолловед. 1994. Т. 77, № 1, С. 79 84.
- Miyazaki S, Liu Y., Otsuka K., McCormick P. G. Electrical resistance in a Ti-Ni alloy during a thermal cycle under constant load // Proc. of Int. Conf. on Mart. Trans. Monterey, California, USA, 1992. P. 929 – 934.
- Schumann H. Kinetic und Morphologie der Gitterumwandlung kubischflachenzentziert // Krist. und. Techn., 1967. Bd.2, N 2. S.555 – 563
- 7. Goo E., Duerig T., Melton K., Sinclair R. Mechanical twinning in Ti₅₀Ni₄₇Fe₃ and Ti₄₉Ni₅₁ alloys // Acta. Met. 1985. Vol.33. N 9. P. 1725 1734
- Сурикова Н. С., Чумляков Ю. И. Механизмы пластической деформации монокристаллов никелида титана // Физ. мет. и металловед. 2000. Т. 89, N 2. С. 98 – 107.