УДК 669.112.227.342

ВЛИЯНИЕ НЕОДНОРОДНОСТИ ФРОНТА УПРАВЛЯЮЩЕГО ВОЛНОВОГО ПРОЦЕССА НА РАСПРЕДЕЛЕНИЕ ДВОЙНИКОВ ПРЕВРАЩЕНИЯ В КРИСТАЛЛАХ МАРТЕНСИТА С ГАБИТУСАМИ ТИПА (259)-(31015)

Let al

81

the second se

М.П. Кащенко, В. Г. Чащина

Уральская государственная лесотехническая академия, Россия, Екатеринбург, 620100, Сибирский тракт, 37 <u>mpk@us/ea</u>. ru

Рассматривается обобщение модели волнового процесса, управляющего ростом двойникованных кристаллов мартенсита. Считается, что относительно длинноволновые

6 m

10

смещения распространяются по кристаллу, обладающему неоднородным состоянием, которое описывается коротковолновыми стоячими волнами смещений. Рассчитаны распределения основной и ожидаемой двойниковой компонент и соотношения их толщий для волнового процесса, управляющего формированием кристаллов с габитусами (259)-(31015). Основное внимание уделяется анализу эволюции двойниковой структуры в зависимости от параметра, характеризующего неоднородность управляющего волнового фронта.

Введение. Постановка задачи

Ранее [1] была предложена динамическая модель волнового управления ростом мартенситного кристалла при реконструктивных мартенситных превращениях (типа γ---α в сплавах железа), дополненная в [2] описанием процесса формирования двойников превращения. Напомним, что в качестве дополнительного постулата в [2] используется предположение о неоднородности предпереходного состояния аустенита. Неоднородность описывается суперпозицией относительно коротковолновых стоячих волн, поляризованных вдоль двух взаимно перпендикулярных осей четвертого порядка. Относительно длинноволновые смещения, формирующие габитусные плоскости мартенситного кристалла и задающие его толщину, распространяются тогда по аустениту, обладающему набором ячеек, потенциально активных для начала генерации коротковолновых смещений, бегущих вдоль взаимно ортогональных осей симметрии четвертого порядка и инициирующих (совместно с длинноволновыми смещениями) процесс бейновской деформации. Приведенный в [2] алгоритм отбора активных ячеек (на основе выполнения порогового условия для деформации) позволяет исследовать распределение основной и ожидаемой двойниковой компонент в зависимости от упругих модулей среды, направлений распространения п_{1.2} длинноволновых смещений и неоднородности фронта этих смещений. Неоднородность фронта в простейшем случае задается следующим образом: считается, что на определенном расстоянии d от центра фронта волны с нормалью \bar{n}_2 , несущей деформацию сжатия, величина этой деформации постоянна и достигает значения, достаточного для активизации ячеек

коротковолновых смещений. Для ячеек, отстоящих от центра фронта на расстояния, большие, чем d, пороговое условие не выполняется. Цель данной работы проиллюстрировать в рамках реалистичной модели влияние параметра d на характер распределения основной и двойниковой компонент в мартенситном кристалле и среднее значение соотношения β их толщин для α-мартенсита в сплавах железа, обладающего габитусами типа (259)-(3 10 15).

Напомним, для удобства читателей, что в используемой модели управляющего волнового процесса (УВП) [2] ориентация n₂ направления распространения длинноволновой составляющей УВП задается углом α между n, и [100] (направление n, лежит в плоскости (001)). Всюду ниже обозначения направлений и плоскостей относятся к стандартному базису исходной у-фазы. Считается, что неоднородное распределение коротковолновых s-смещений в предпереходной области температур описывается в плоскости (001) квадратными ячейками в форме «шахматной доски» с деформацией типа «сжатие - растяжение» в направлениях [100] и [010]. Размер ребер ячейки в плоскости (001) равен половине длины λ_s /2 коротковолновых смещений, а в направлении [001] половине длины волны λ_ρ/2 длинноволновых смещений, несущих деформацию растяжения. Параметр d задается в единицах λ_S/2. Распределения основной и ожидаемой двойниковой компонент удобно приводить, рассматривая пространственный период L вдоль направления n₂. Построив такое распределение,

легко определить величину β, суммируя толщины соответствующих двойниковых структур на периоде L. Выберем в качестве упругих модулей значения (в единицах TПа) C_L=0.218, C'=0.027, C₄₄=0.112, соответствующие сплаву Fe-31.5%Ni при температуре начала мартенситного превращения M_s=239К. Тогда, используя алгоритм [2], можно получать распределения компонент двойника и величину β, задавая значения tga, d и величины пороговой деформации ε_{пs}. Величина ε_{пs} нормируется на свое максимальное значение, так что $\varepsilon_{ns} \le 1$.

Распределения основной и ожидаемой двойниковой компонент

В случае кристаллов с габитусами (259)-(3 10 15), как известно [1], ориентация нормали n₂ характеризуется близким к π/2 углом с осью [001] и меньшим углом α с осью [100] по сравнению с углами между \bar{n}_2 и осями симметрии [010] и [110]. Уместно ограничиться диапазоном углов α из интервала (0° – 22°), варьируя параметры d и ε_{ns} .

Расчеты показывают, что имеется интервал углов $\alpha \in (0^{\circ} - 7.125^{\circ})$, характеризующийся абсолютным преобладанием основной компоненты. Для углов, значения которых выходят за пределы этого интервала, существует зависимость величины усредненного по периоду соотношения основной и двойниковой компонент β от уровня пороговой деформации єпя, позволяющая определять интервалы деформаций, удовлетворяющих заданному соотношению толщин. Таким образом, зависимость β-ε дает дополнительную информацию для восстановления динамической картины роста мартенситного кристалла по его морфологическим признакам. А именно, в рамках подобной модели по экспериментальному распределению на периоде L толщин основной и двойниковой компонент, можно судить об уровне пороговых деформаций. Приводимые ниже графические данные позволяют легко установить область значений параметров ε, для которой величина β принимает некоторые характерные значения, включающие и упоминаемые в литературе расчетные и экспериментальные значения.

иллюстрации на рис.1 приведен ряд зависимостей β-ε для случая Для tg $\alpha = \frac{3}{10}$ ($\alpha \approx 16,7^{\circ}$), при различных значениях параметра d. β 10-8 $\beta(d=4)$ $\beta(d=3)$ $\beta(d=2)$ 31124 επs 0.75 0.70 0.80 0.60 0.85 0.65 0.45 0.50 0.55 0.40 60. .95 Рис. 1. Зависимость β - ε при tg $\alpha = \frac{3}{10}$ ($\alpha \approx 16.7^{\circ}$) для различных значений параметра d.

0.77

Прежде всего, отметим, что графики имеют ступенчатую форму, причем ширина ступеньки задает интервал пороговой деформации ε_{пs}, отвечающей фиксированному значению β.

Из графиков видно, что зависимость ε - β весьма чувствительна к изменению параметра d: увеличение значения d при фиксированных ε_{ns} и α приводит к существенному смещению границ интервалов пороговых деформаций, отвечающих определенным значения β , в сторону больших значений ε . Как правило, при таком смещении сокращается и величина интервала ε_{ns} , характеризуемого конкретным значение β .

В частности, графические данные, приведенные на рис. 1, позволяют легко восстановить уровни пороговых деформаций, отвечающих усредненному соотношению толщин, близкому к 2:1, часто упоминаемому в литературе. Соответствующие данные, для удобства, приведены в таблице.

Таблица.

tgα	β	ε _{πs}	d
$\frac{2}{7} (\alpha \approx 21.8^{\circ})$	1.7	0.830-0.871	2
	2.375	0.599-0.830	
	1.7	0.909-0.916	3
	2.375	0.881-0.909	
	1.7	0.945-0.951	- 4
	2.375	0.916-0.945	
$\frac{3}{10}(\alpha \approx 16.7^{\circ})$	1.888	0.733-0.751	2
	1.888	0.901-0.912	3
	1.888	0.913-0.925	4
$\frac{4}{10} (\alpha \approx 21.8^{\circ})$	2.111	0.762-0.779	2
	1.8	0.882-0.895	3
	1.8	0.894-0.907	4

State of the state

Изменение направления распространения n₂, как показывают расчеты, сопровождается изменением характерных значений β. Интересно, что среднему значению β может отвечать нерегулярное распределение основной и двойниковой компонент на пространственном периоде L.

Для расчета основной и ожидаемой двойниковой компонент была разработана программа, позволяющая визуализировать и проводить развертку во времени процесса роста основной компоненты МК, базируясь на знании упругих модулей и направлений распространения управляющей волны. Значения tga, d и расстояние $\ell_{[1\bar{1}0]}$ (в единицах $\frac{\lambda_s}{2}$), ограничивающее размер двойника в $[1\bar{1}0]$ направлении, задаются в программе как

Приводимые на рис. 2 данные иллюстрируют случай tga = $\frac{3}{10}$ ($\alpha \approx 16.7^{\circ}$) (светлым полосам на рисунках отвечает основная компонента, а темным – двойниковая). Аналогичные пространственные распределения обеих компонент для случаев tga = $\frac{2}{7}$ ($\alpha \approx 16^{\circ}$) и tga = $\frac{4}{10}$ ($\alpha \approx 21.8^{\circ}$) можно найти на рис. 3 и рис. 4, соответственно.

внешние параметры.

a) $\varepsilon_{ns}=0.820$, $\beta=1.36$, d=2; b) $\varepsilon_{ns}=0.910$, $\beta=1.888$, d=3; b) $\varepsilon_{ns}=0.922$, $\beta=1.888$ d=4.

На приводимых рисунках $\ell_{[1\bar{1}0]}$ выбрано небольшим (в реальных кристаллах $\ell_{[1\bar{1}0]}$ соизмеримо с шириной кристалла).

пространственном периоде для $tg\alpha = \frac{2}{7} (\alpha \approx 16^{\circ})$:

85

a) $\varepsilon_{ns}=0.85$, $\beta=1.7$, d=2; b) $\varepsilon_{ns}=0.89$, $\beta=2.375$, d=3; b) $\varepsilon_{ns}=0.925$, $\beta=2.375$, d=4.

Рис. 4. Распределение основной и ожидаемой двойниковой компонент на пространственном периоде для $tg\alpha = \frac{4}{10} (\alpha \approx 21.8^{\circ})$: a) $\varepsilon_{ns} = 0.770, \beta = 2.11, d = 2;$ b) $\varepsilon_{ns} = 0.89, \beta = 1.8, d = 3;$ b) $\varepsilon_{ns} = 0.85, \beta = 2.5, d = 4.$

Обсуждение результатов

81

31

100.0

84.7

Полученные результаты демонстрируют возможность достаточно гибкого

избирательного поведения динамической системы, теряющей устойчивость при согласованном воздействии длинноволновых и коротковолновых смещений. Например, значения параметра β могут оказаться близкими к 2 или 1 при слабом изменении ориентировки габитусной плоскости. Отметим, в частности, что реализация значения β=1 в случае низкотемпературного мартенсита может обеспечить минимизацию вклада энергии упругих искажений от парных стыков кристаллов с габитусами типа {259}, {3 10 15}. Подобные стыки зачастую наблюдаются вблизи пластин мартенсита, обрамляющих фермообразные (зигзагообразные) ансамбли мартенситных кристаллов. Поэтому применение изложенной простой модели к описанию таких стыков представляется перспективным, так как вблизи обрамляющей пластины вполне возможно существование упорядоченной совокупности стоячих коротковолновых смещений.

Ярко выраженную зависимость ширины интервала ε_{ns} для конкретного значения β от величины d в рассмотренной модели естественно интерпретировать, как следствие неоднородности фронта волнового пучка с нормалью n_2 . Существенно, что при малых d (неоднородность фронта пучка велика) имеются значения β , для которых величины интервалов ε_{ns} велики. Очевидно, что, при прочих равных условиях, подобные значения β будут выделены, поскольку уже на стадии зарождения вероятность реализации мартенситного кристалла с данным β будет доминировать.

В свою очередь, можно ожидать, что среди микроструктур, отвечающих близким ориентировкам габитусов и средних значений β, выделенную роль будут играть структуры с регулярным чередованием основной и двойниковой компонент. Ясно, что регулярные структуры такого рода будут характеризоваться малым пространственным периодом L, что позволяет реализовать описанную схему роста (по крайней мере, на начальной стадии) двойникованного кристалла в локальных областях с упорядоченной структурой коротковолновых смещений. Поскольку система стоячих ВОЛН. возникающая вблизи неоднородности, в случае коротковолновых смещений, повидимому, обладает заметным затуханием (время жизни бегущих волн порядка 10⁴ колебания Т_s [1]), то допущение о существовании длинного периодов пространственного периода L выглядит искусственным. Тем не менее, и в случае длинного периода, характеризуемого высокой степенью регулярности, можно говорить существовании малого квазипериода. Таким образом, наличие 0 малого пространственного периода (квазипериода), обусловленного регулярностью (квазирегулярностью) чередования основной и двойниковой компонент, позволяет отказаться от жесткого требования существования пространственного и временного упорядочения динамических ячеек в обширных областях аустенита, что весьма существенно на стадии зарождения.

86

В частности, на рис.2, в) приведено квазирегулярное (на периоде L) распределение,

отвечающее $\beta \approx 1.9$ с квазипериодом $L = \frac{3\lambda_s}{2 \cdot \cos\alpha} \approx 1.57 \lambda_s$.

Естественным следствием рассматриваемой модели является то, что толщины двойников в мартенситных кристаллах кратны величине λ_s $\sqrt{2}$.

Подчеркнем, наконец, что результаты, полученные в модели, учитывающей дополнительное влияние коротковолновых смещений на формирование мартенситного кристалла, хорошо согласуются как с выводами модели гетерогенного зарождения и волнового роста мартенсита [1], так и с известными экспериментальными данными о двойниковой структуре кристаллов.

Список литературы

1. Кащенко М. П. Волновая модель роста мартенсита при у-а превращении в сплавах на

основе железа. Екатеринбург.: УИФ «Наука», 1993. 224 с. 2. Кащенко М.П, Чащина В.Г. Динамический механизм двойникования мартенситного кристалла. В кн: Механизмы деформации и разрушения перспективных материалов. сб. трудов XXXV семинара «Актуальные проблемы прочности». Псков: ППИ СПбГТУ, 1999. С.14-19.