тельно повышен путем перемонтажа секций змеевиков: когда металл труб со стороны огневого обогрева достигает состояния, близкого к предельному, целые секции змеевиков или их участки переворачиваются на 180 градусов.

Список литературы

- 1. ГОСТ 8732-78-78 Трубы стальные бесшовные горячедеформированные. Сортамент.
- Инструкция по техническому надзору, методам ревизии и отбраковки трубчатых печей, резервуаров, сосудов и аппаратов нефтеперерабатывающих и нефтехимических производств. ИТН-93. ВНИКТИнефтехимоборудование, Волгоград, 1993 -188 с.
- Ентус Н.Р., Шахрин В.В. Трубчатые печи в нефтеперерабатывающей и нефтехимической промышленности. М.: Химия, 1987. 301 с.
- 4. ГОСТ 20072-74 Сталь теплоустойчивая. Технические условия.
- ГОСТ 550-75 Трубы стальные бесшовные для нефтеперерабатывающей и нефтехимической промышленности. Технические условия.
- Антикайн П.А. Металлы и расчет на прочность котлов и трубопроводов. М.: Энергия, 1980. 423 с.

УДК 534.8

ИЗМЕНЕНИЕ ТЕМПЕРАТУРЫ РЕЗОНАНСНЫХ ОБРАЗЦОВ ПРИ УЛЬТРАЗВУКОВОМ ВОЗДЕЙСТВИИ

Клубович В. В., Рубаник В. В., Бегунов М. А., Рубаник В. В. (мл.), Борозендева Ю. Б.

Институт технической акустики, Витебск, Беларусь ita@vitebsk.bv

Возбуждение акустических колебаний ультразвукового низкочастотного диапазона (УЗК) в материале приводит к рассеянию части звуковой энергии, которая необратимо переходит в тепло. Ультразвуковой разогрев может быть неравномерным по длине образца и довольно значительным, вплоть до температур плавления. Вследствие этого возникает необходимость учитывать тепловую составляющую ультразвукового воздействия на материалы и, где необходимо, сводить ее к минимуму.

Максимальный отбор акустической энергии от преобразователя реализуется, если собственная частота элементов колебательной системы совпадает с частотой возбуждаемых колебаний, т.е. в резонансном режиме. Этот режим характеризуется распределением акустических параметров по длине волновода. В случае полуволнового стержня со свободным концом ($l = \lambda/2$) в его середине наблюдается узел механических смещений и пучность напряжений (напряжения достигают максимума), а на торце волновода – пучность смещений и узел напряжений. При этом распределение амплитуд смещений, деформаций и напряжений в случае однородного стержня постоянного сечения соответственно равны:

$$\xi_{\rm m} = \xi_{\rm mo} \cos k\alpha, \ \epsilon_{\rm m} = k\xi_{\rm mo} \sin k\alpha, \ \sigma_{\rm m} = Ek\xi_{\rm o} \sin k\alpha, \ (1)$$

где ξ_{mo} – амплитуда смещений, возбуждасмая на закрепленном конце стержня; $k = \omega/c$ – волновое число; $c = (E/p)^{1/2}$ – скорость звука в стержне.

Следует заметить, что выражения (1) описывают поведение идеальной системы, т.е. системы без потерь. При небольших мощностях ультразвука с амплитудами деформации $\varepsilon_m < 10^{-6} + 10^{-5}$ внутреннее трение не зависит от ε_m , и в волноводных системах не происходит перераспределения акустических параметров по длине волновода и изменеция резонансной частоты [1, 2].

В случае больших интенсивностей ультразвука происходит рассеяние упругой энергии ультразвуковой волны, возрастание коэффициента затухания, который связан с коэффициентом внутреннего трения материала. При этом изменяется резонансная частота ультразвуковой волны, перераспределяются акустические параметры системы. Неучет амплитудно-зависимого затухания может приводить к ошибке в определении амплитуды деформации в волноводе по выражению (1) до 20 % [3].

При работе волноводной системы в резонансном режиме наблюдается постоянное распределение акустических параметров в ней. Поскольку выделение тепла зависит от амплитуды деформации, то распределение температуры в образце также описывается функцией синуса, т. е. волновод должен нагреваться неравномерно. Такой неравномерный нагрев действительно наблюдается в [4-6], причем градиент температур может достигать по длине образца 1000°С [5]. При ультразвуковом воздействии в полуволновых металлических образцах максимум температуры приходится на середину волновода. Так, при воздействии УЗК в течение 20 секунд образцы из стали, меди и латуни нагревались на 100÷200°С, алюминиевые образцы – всего на 5÷10°С. В нерезонансных образцах локальный нагрев наблюдался в месте крепления к концентратору [7].

В работах по ультразвуковому разогреву волноводных систем в качестве датчиков температуры обычно используют термопреобразователи (термопары), запрессованные в различных местах образца, либо оптические пирометры – при нагреве до высоких температур. С появлением нового оборудования, способного измерять температуру тела с хорошей разрешимостью бесконтактными способами в инфракрасной области спектра, было показано, что зачеканенные в тело волновода термопары, всевозможные дефекты в нем (трещины, границы зерен, срезы) способны при ультразвуковом воздействии инициировать локальный разогрев [7], что, в свою очередь, ведет к искажению всей картины теплового действия ультразвука.

В работе [8] с помощью ультразвукового нагрева вызывали локальную рекристаллизацию стали, выпрямление границ зерен и их ориентацию в направлениях максимальных касательных напряжений. При выпрямлении границы за счет внутреннего трения выделяется максимальное количество тепловой энергии, что определяет выявление эффектов разрушения и пережога по ориентированным границам зерен [9].

Изучение температурного перегрева на границах зерен при ультразвуковом нагреве по микроструктуре и травимости мартенсита стали показало[10], что основное отличие ультразвукового от других методов нагрева состоит в следующем: температурное микрополе источников внутрениего трения (границы зерен) не успевает выравниваться за счет теплопроводности в упругую среду, в связи с чем часто наблюдается пережог металла по границам зерен. В некоторых случаях локальный перегрев вязких областей вызывает локальную рекристаллизацию структуры Делается предположение о возможности влияния на процессы перекристаллизации, рекристаллизации мартенситных и других превращений в твердой фазе ультразвукового разогрева за чет действия Внутренних микролокальных источников тепла, создающих микронеравномерное температурное поле в объеме образца.

В общем случае, если в однородном стержие поддерживать резонансный режим возбуждения ультразвуковых колебаний, то с высокой степенью точности можно проЧасть I

гнозировать разогрев в любом его сечении за счет поглощения УЗК. Это важно, например, при исследовании термоупругих мартенситных превращений, а так же для моделирования режимов работы волноводных систем различного технологического назначения.

Учитывая вышесказанное, и ставя задачу изучения температурных профилей различных резонансных волноводных систем, в том числе, и из никелида титана, за счет ультразвукового разогрева, нами были проведены тепловизионные исследования волноводов, предназначенных для волочения проволоки с наложением УЗК, а также моделирование процесса ультразвукового нагрева резонансных образцов.

За основу математической модели ультразвукового разогрева волновода цилиндрической формы длиной кратной половине длины волны выбрано уравнение [1]:

$$\Delta t(x,t) = t_{n} - t_{n} = C(x,t) + \sum_{n=0}^{\infty} (B_{n} - D_{n} - F_{n}) , \qquad (2)$$

где член

$$C(x,t) = \frac{3}{16} \frac{x Q^{-1}(x_{m0}) Ef}{Ja_{1}} \begin{vmatrix} k^{2}x_{1}t + \frac{1}{6}(1 - e^{-16k^{2}x_{1}t})\sin^{4}k(l-x) + \frac{2}{3}(\frac{3}{4} - e^{-4k^{2}x_{1}t} + \frac{1}{4}e^{-16k^{2}x_{1}t}) \times \\ \times \sin^{2}k(l-x) - \frac{1}{48}e^{-16k^{2}x_{1}t} + \frac{1}{3}e^{-16k^{2}x_{1}t} - \frac{5}{16} \end{vmatrix}$$
(3)

определяет нарастание температуры в любой точке стержня, обусловленное только выделением тепла источниками. Члены $B_n(x,\tau)$, $D_n(x,\tau)$ и $F_n(x,\tau)$ определяют измерение температуры, обусловленное теплопроводностью стержня и теплоотводом в концентратор. При $\frac{x}{2\sqrt{x_n}\tau} >> 1$ для определения $\Delta t(x,t)$ достаточно взять только первый член в выражении (2). Интервал времени воздействия составлял 10÷100 с. Величину внутреннего трения Q^{-1} определяли как

$$Q^{-1} = \frac{\pi a}{\lambda} . \tag{4}$$

Таким образом, исходными данными для расчета являются: α – коэффициент затухания; λ – длина волны; $\varepsilon_{m0} = \xi_{m0}k$ – амплитуда в пучности деформации; ξ_{m0} – амплитуда смещений на свободном конце стержня; f – частота колебаний; E – модуль упругости; l – длина образца; J – механический эквивалент теплоты; x – смещение относительно начала образца; τ – время воздействия ультразвука; температуропроводность: $\chi_1 = \frac{a}{\rho_1 c_1}$, где a_1 – теплоповодность образца, ρ_1 – плотность, c_1 – теплоемкость;

k - волновое число.

Разработанная компьютерная анимационная модель ультразвукового разогрева материалов на основе уравнений (1-4) позволяет визуализировать процесс нагрева материалов под действием ультразвука и состоит из двух модулей: ввода данных для визуализации процесса ультразвукового разогрева и модуля отображения температуры образца в любой его точке. В процессе работы в режиме реального времени на дисплее отображается распределение напряжений и температуры в образце при ультразвуковом воздействии. При моделировании ультразвукового разогрева в программе задаются следующие параметры: коэффициент затухания, модуль упругости и температуропроводность материала; амплитуда, длина и частота ультразвуковой волны, время действия ультразвука. Длина образца задается равной или кратной половине длины ультразвуковой волны, т.е. выполняется условие для образования стоячей волны.

В результате проведенного моделирования в резонансных образцах никелида титана установлено неравномерное распределение температуры по длине – градиент составляет до 60°С. Расхождение данных, полученных компьютерным моделированием и экспериментально [11], составляет 5–10°С (Рис. 1).

Рис. 1. Распределение температур по длине волнового стержня: а – экспериментальное, b – расчетное.

Таким образом, разработанная программа компьютерного моделирования позволяет прогнозировать тепловые режимы работы простейших волноводных систем ультразвуковых колебаний.

В качестве примера на рис. 2 приведено распределений температурных полей в наиболее используемых при волочении в волноводных системах.

В первом случае твердосплавную волоку запрессовывали на горячую в пучности механических смещений цилиндрического волновода, во втором – крепили с помощью резьбового соединения (конический волновод). Хотя технологически в эксплуатации более удобен волновод, к которому можно с помощью резьбового соединения крепить волоки различного диаметра, с точки зрения температурного режима, а значит и устойчивой работы колебательной системы предпочтение следует отдавать волноводам с неразъемным соединением волочильного инструмента.

Рис. 2. Термографический профиль волновода с запрессованной (а) и закрепленной с помощью резьбового соединения (b) волокой через 60 сек. ультразвукового воздействия Температура в точках 1 (a) 34,4°С; 2 (a) 28,0°С; 1 (b) 31,4°С; 2 (b) 49,8°С.

Список литературы

- 1. Кулемин А.В. Ультразвук и диффузия в металлах. М.: Металлургия, 1978.
- 2. Теумин И.И. Ультразвуковые колебательные системы. М., Машгиз, 1959.
- Абрамов О.В., Асташкин Ю.С. Прочность-пластичность материалов в ультразвуковом поле. Ч.Ш. Минск, НТО «Машпром», 1973. – С. 119-121.
- Кузьменко В.А. Звукозые и ультразвуковые колебания при динамических испытаниях материалов. Киев. Изд-во АН УССР, 1963.
- Миротворский В.С., Волк В.Я. // В кн.: Ультразвук в машиностроении. М., ЦНИИПИ, 1969. – С. 31-36.
- Балалаев Ю.Ф., Постников В.С. // Физика и химия обработки материалов, 1968, № 2. С. 117-119.
- 7. Mignogna R.B. etc. // Ultrasonic. July 1981. P. 159-163.
- 8. Балалаев Ю.Ф. // МиТОМ, № 1, 1964. С. 48-49.
- Балалаев Ю.Ф., Бокштейн С.З. // Процессы диффузии, структура и свойства металлов. М.: Машиностроение, 1964. – С. 113-116.
- 10. Балалаев Ю.Ф., Бокштейн С.З. // ФММ, 1963, т. 16, вып. 6. С. 872-876.
- Rubanick V., Razov A., Rubanick V., Jr. // Shape Memory Alloys: Proceed. of the Intern. Symp. Quebec, Canada, 1999. - P 283-287.