УДК 621.891

МЕХАНИЗМ КОНТАКТНОГО РАЗРУШЕНИЯ ПРИ ТРЕНИИ МАТЕРИАЛОВ С МОДИФИЦИРОВАННЫМИ ИОНАМИ АЗОТА СЛОЯМИ

Витязь П. А.¹⁾, Белый А. В.²⁾, Кукареко В. А.¹⁾, Колубаев А. В.³⁾, Рубцов В. Е.³⁾

 ¹⁾ Институт механики и надежности машин НАН Беларуси, Минск, Беларусь,
²⁾ Физико-технический институт НАН Беларуси, Минск, Беларусь,
³⁾ Институт физики прочности и материаловедения СО РАН, Томск, Россия alex@inmash.bas-nct.by

В работе приведены результаты экспериментальных исследований структуры и триботехнических свойств имплантированных ионами азога легированных сталей 08X18H10T и 40X13, а также численные расчеты, свидетельствующие о том, что под твердым модифицированным слоем в магрице развивается пластическая деформация. Предложен механизм контактного разрушения модифицированных ионами азота магериалов при трении, основанный на учете пластической деформации подповерхностных немодифицированных слоев.

Введение

Для создания материалов, обладающих высоким сопротивлением разрушению, используются различные способы нанесения покрытий и модифицирующей обработки новерхностных слоев материалов, основанные на применении высокоэнергетических лучевых и плазменных методов [1, 2]. Упрочнение или модифицирование поверхностного слоя позволяет предотвратить процесс зарождения деформационных дефектов и, как следствие, повысить прочностные и триботехнические свойства материалов [2, 3]. В то же время, наличие границы раздела между высокопрочным слоем и основой, имсющих различные физико-механические свойства, приводит к формированию градиентов напряжений, значительно превышающих уровень средних приложенных напряжений и способствующих преждевременному разрушению упрочненного слоя [4, 5]. Тем не менее, в практике довольно часто встречаются примеры, когда одно и то же защитное покрытие в одном случае сохраняет работоснособность длительное время, в другом - разрушается, не выработав свой ресурс. Столь неоднозначное поведение может быть обусловлено как условиями нагружения, так и параметрами, характеризующими свойства упрочненного поверхностного слоя и основы. В данной работе рассмотрен механизм зарождения и развития локализованной деформации в приповерхностных слоях модифицированных азотом стальных образцов, приводящей к разрушению покрытий в процессе контактного взаимодействия при трении. В качестве материалов для исследования выбраны высоколегированные стали 08Х18Н10Т и 40Х13, существенно различающиеся по своим механическим свойствам в исходном состоянии до модифицирующей обработки.

Методика эксперимента

Исследование проводилось на образцах с размерами 5x6x10 мм, изготовленных из прокатанных прутков промышленных сталей 08X18H10T и 40X13. Ионно-лучевая обработка осуществлялась на ускорителе ионов, оснащенном ионным источником с замкнутым дрейфом электронов [2]. В качестве легирующего элемента использовался азот. Имплантация проводилась в течение 120 минут при энергии ионов 1-3 кэВ и плотности ионного тока 2 мА/см², что обеспечивало флюенс легирования ~3×10¹⁹ см⁻². Температура образцов в процессе ионно-лучевой обработки составляла 620, 670, 720, 770 К и контролировалась с помощью термопары.

Твердость по Виккерсу HV определялась при нагрузке 300 H на твердомере ТП. Микротвердость Н_и измерялась на приборе ПМТ-3 при нагрузке 1,0 H.

Триботехнические испытания с возвратно-поступательным перемещением образца в условиях сухого трения проводились на лабораторном трибометре АТВП, оснащенном специально разработанным устройством для измерения коэффициента трения. Проводились сравнительные испытания на износостойкость образцов стали 08Х18Н10Т и 40Х13 в исходном состоянии, а также после низкоэнергетического ионного микролегирования азотом при различных температурах. В качестве контртела использовалась закаленная сталь 60. Твердость стали составляла HV = 8000 МПа. Контртело имело форму пластины с размерами 4×40×90 мм. Средняя скорость перемещения контртела в процессе испытаний составляла ~0,1 м/сек, амплитуда возвратнопоступательного движения - 25 мм. Удельное давление в зоне фрикционного контакта составляло 1.0 МПа (сталь 08Х18Н10Т) и 1,5 МПа (сталь 40Х13). Испытания проводились до достижения 20000 циклов (путь трения 1000м) с определением весового и линейного износа образца. В процессе испытания регистрировались текущие значения коэффициента трения f. Измерение величины износа образцов осуществлялось по потере веса при испытаниях. Образцы взвешивались на аналитических весах АДВ-200М. Ошибка измерения массы образцов не превышала 0,05 мг.

Результаты эксперимента

<u>Структура.</u> В исходном состоянии аустенитная сталь 08X18H10T имеет ГЦК решетку с параметром a = 0,3592 нм. Твердость стали составляет HV = 2200 МПа, а микротвердость H_µ = 2600 МПа. Ионное азотирование нержавеющей стали при 620, 670, 720 и 770 К приводит к образованию на поверхности высокопрочных модифицированных слоев, толщиной 3; 6; 10 и 15 мкм соответственно. Микротвердость данных слоев составляет 5000; 10000; 14500 и 14000 МПа. Фазовый состав модифицированных слоев после ионной обработки при 620 - 720 К: азотистый аустенит и нитридная фаза на основе ГЦК решетки с гексагональными (620 - 670 К) или тетрагональными (720 К) искахениями. Имплантация азота при 770 К приводит к образованию в слое частиц CrN, а также появлению в нем α -Fe в результате $\gamma \rightarrow \alpha$ превращения обедненного хромом аустенита [6].

Сталь 40X13 в исходном закаленном состоянии имеет структуру игольчатого мартенсита с включениями карбида хрома $Cr_{23}C_6$. Твердость стали составляет 6000 МПа, а микротвердость 6500 МПа. В результате ионного азотирования при 620, 670, 720 и 770 К га поверхности формируются модифицированные слои, толщиной соответственно 6; 12; 25; и 35 мкм. Микротвердость поверхностных слоев составляет 11500; 17000; 17000 и 12000 МПа. Основными фазами, выделющимися в модифицированных слоях при 620-670 К являются нитриды ε -(Fe,Cr)₂₋₃N, α "- Fe₈N и γ '-(Fe,Cr)₄N. После азотирования при 720-770 К в модифицированном слое отпушенной стали 40X13 резко падает концентрация ε -, α "- и γ '-фаз и обнаруживается выделение специального нитрида CrN [7].

<u>Износостойкость</u>. Зависимости линейного износа при трении без смазки сталей 08X18H10T и 40X13 от режима их обработки приведены на рисунках 1, *a*, *б*.

Рис. 1. Зависимость линейного износа от пути трения сталей 08Х181110Т (а) 40Х13 (б), обработанных по различным режимам (трение без смазки): 1 – исходное состояние стали; 2 – имплантация N' при 620 К; 3 – то же при 670 К; 4 – то же при 720 К; 5 – то же при 770 К

В исходном состоянии износостойкость сталей сравнительно невелика. В частности, интенсивность изнашивания стали 08X18H10T составляет $I_h \approx 100 \cdot 10^{-8}$, а стали 40X13 - 3 10^{-8} (см. таблицу 1). Фрикционное взаимодействие сталей приводит к адгезионному схватыванию и задиру с образованием на поверхности характерной бороздчатой структуры (рис. 2, *a*). Микротвердость поверхностного слоя стали 08X18H10T при трении возрастает до H_{0.98} = 5000÷6000 МПа, а стали 40X13 – до 6700 МПа. Данные рентгеноструктурного анализа свидетельствуют о фазовом $\gamma \rightarrow \alpha$ превращении в зоне трения стали 08X18H10T, с чем, по-видимому, и связано столь существенное возрастание микротвердости ее поверхности трения.

Марка стали	Режим ионной обработки	Интенсивность износа I _h , 10 ⁻⁸	Коэффициент трения ƒ	Удельная работа изнашивания, МДж/см ³	
40Х13, (закалка)	Закалка	2,9	0,90-1,04	20	
	N ⁺ 620 K	2,0	0,90-1,08	45	
	N* 670 K	1,2	1,02-1,08	60	
	N* 720 K	0,2	1,05-1,08	450	
	N* 770 K	0,1	0,90-1,05	550	
08X18Н10Т (состояние по- ставки)	Исх. состояние	91,0	0,55-0,65	0,3	
	N ⁺ 620 K	90,0	0,55-0,65	0,5	
	N ⁺ 670 K	95,0	0,55-0,65	0,3	
	N* 720 K	2,0	0,80-0,85	120	
	N ⁺ 770 K	0.2	0.70-0.75	240	

Таблица 1. Значения интенсивности изнашивания *I_h*, коэффициента трения *f* и удельной работы изнашивания *W* для сталей 08Х18Н10Т и 40Х13 после различных режимов обработки

Вместе с тем коэффициент трения в случае трения стали 08X18H10T относительно невелик и составляет $f \equiv 0,65$ (табл.1). Сочетание высокой интенсивности износа с низким коэффициентом трения свидетельствует о весьма низком уровне энергии активации процесса разрушения немодифицированной стали 08X18H10T. Так, в частности, удельная работа изнашивания необлученной стали 08X18H10T составляет только 0,3 МДж/см³ (табл. 1). Микротвердость, а также интенсивность и удельная работа изнашивания закаленной стали 40X13, имеющей мартенситную структуру, существенно превышают значения этих характеристик для стали 08X18H10T (см. табл. 1).

Ионно-лучевая обработка сталей, приводящая к формированию модифицированных градиентных слоев толщиной 3-6 мкм, не обеспечивает существенного возрастания износостойкости материалов в условиях адгезионного взаимодействия при трении без смазки (рис. 1). Так в процессе испытаний стали 08Х18Н10Т модифицированный слой удаляется с поверхности уже на первых метрах пути трения, и интенсивность изнашивания материала достигает уровня значений (Ih~100.10⁻⁸), характерных для неимплантированной стали. В стали 40X13, несмотря на более высокий уровень номинального контактного давления, модифицированный слой толщиной 5-6 мкм разрушастся после пути трения 100-200 метров (рис. 1). При переходе к более высоким температурам ионной обработки сталей (720 и 770 К), приводящим к существенному увеличению толщины модифицированных слоев, износостойкость сталей вссьма существенно возрастает (рис. 1). Так, например, для стали 08Х18Н10Т интенсивность изнашивания модифицированных при 720 и 770 К слосв соответственно в ~50 и 500 раз ниже, чем у необработанной стали и составляет $I_h = 2 \cdot 10^{-8}$ и 0,2 · 10⁻⁸ (табл. 1). Для модифицированной стали 40Х13 интенсивность линейного износа также выходит на весьма низкий уровень значений $I_h = 0, 1-0, 2\cdot 10^{-8}$. Кроме этого при испытаниях модифицированных слоев регистрируется повышенный уровень значений коэффициента трения (табл. 1), что свидстельствует о высокой энергии активации процесса их разрушения (табл. 1). В процессе фрикционного взаимодействия поверхность упрочненных при 720 - 770 К сталей выглаживается и приобретает характерный зеркальный блеск (рис. 2,6) [7]. Отмеченные особенности процесса изнашивания свидстельствуют о высоких антифрикционных свойствах модифицированных слоев.

Для анализа процессов, происходящих при контактном взаимодействии материалов с упрочненными слоями, рассмотрим структурные превращения в поверхностях трения модифицированной при 720 К стали 08Х18Н10Т, имесощей наиболее характерную кривую изнашивания (рис. 1). Результаты рентгеноструктурных исследований поверхностей трения предварительно имплантированной при 720 К стали 08Х18Н10T показывают, что уже на ранних стадиях испытаний (100 – 300 метров пути трения), когда интенсивность изнашивания невелика и накопленный износ не превышает 1–3 мкм, на дифракционной картине от поверхностных слоев уже появляются линии α -фазы (рис. 3). Последнее свидетельствует о процессах интенсивного пластического деформирования в подповерхностных неимплантированных слоях ($\delta \approx 10$ мкм), приводящих к фазовому γ - $\lambda \alpha$ превращению в них. Увеличение пути трения модифицированной стали (до 400–500 метров) сопровождается постепенным износом упрочненного слоя до толщин $\delta \approx 5-6$ мкм.

Далее при фрикционных испытаниях регистрируется резкая интенсификация износа (рис. 1) и обнаруживается появление на поверхности трения упрочненной стали характерных борозд изнашивания, свидстельствующих о развитии процессов адгезионного схватывания и задира в контактирующих поверхностях. При металлографическом анализе на поверхности трения и в полосах задира модифицированной стали были выявлены участки с периодически расположенными микротрещинами (рис. 2, *e*), которые переходят в зоны глубинного выкращивания и отслаивания покрытия (рис. 2, *e*). Рент-

геновских дифрактограммы, полученные от поверхности трения стали 08X18H10T на поздних стадиях испытаний, содержат интенсивные дифракционные линии α-фазы.

Рис. 3. Фрагменты рентгеновских дифрактограмм (CuK_e) от поверхностных слоев стали 08Х18Н10Т после ионной имплантации азотом при 720 К и трения без смазки: *а* – исходное состояние; *б* – путь трения 110 м; *в* – путь трения 320 м;

Последнее свидетельствует о выходе на поверхность трения немодифицированных подповерхностных слоев и образовании мартенсита деформации в процессе фрикционного контактного взаимодействия. Регистрируемое на поздних стадиях испытаний катастрофическое разрушение модифицированного слоя, по-видимому, вызвано уменьшением его толщины в процессе изнашивания и снижением несущей способности слоя, как и в описанном ранее случае модифицирования при 620 и 670 К. При этом в подложке развиваются интенсивные пластические сдвиги. Подобные зависимости износа от пути трения обнаруживаются и при испытаниях модифицированной при 620 – 670 К стали 40X13.

Таким образом, полученные результаты свидетельствуют о том, что в сталях 08X18H10T и 40X13 формирование тонких упрочненных слоев ($h \le 5-6$ мкм) не обеспечивает увеличения износостойкости градиентного материала в условиях адгезионного контактного взаимодействия, и модифицированный слой быстро разрушается в процессе сухого трения. Причиной ускоренного разрушения упрочненных слоев малой толшины в процессе фрикционного взаимодействия является интенсивная пластическая деформация основы в прилегающих к покрытию областях. На рис. 4 приведена схема, иллюстрирующая процесс зарождения и распространения микротрещин в тонких поверхностно упрочненных слоях при трении. Несоответствие деформаций твердого слоя (упругая деформация) и подложки (пластическая деформация) вызывает образование дефектов в подложке, а также растягивающих напряжений в модифицированном слос. приводящих к зарождению на границе слоев микротрещин, распространяющихся в модифицированный слой и глубокие подповерхностные слои (рис. 4, б-д). Развитие трещин приводит к формированию частиц износа. Пластифицированию подложки в значительной степени содействует интенсивное тепловыделение, происходящее в участках контактного фрикционного взаимодействия при трении без смазки [8].

Рис. 4. Схема развития микротрещин при трении материалов с модифицированными слоями.

Регистрируемое различие в кинетике разрушения тонких модифицированных слоев при трении сталей 08Х18Н10Т и 40Х13, по нашему мнению, связано с неодинаковыми физико-механическими свойствами подложек сталей.

Для понимания механизма контактного разрушения материалов с модифицированными слоями был проведен теоретический анализ развития пластической деформации в градиентном материале при трении. Ниже приведены результаты моделирования и оценки величины сдвиговой деформации вблизи поверхности, на которой методом ионной имплантации сформирован упрочненный слой, со свойствами, отличными от свойств основного материала. Численные эксперименты проводили с использованием одномерной макроскопической модели, описывающей поведение материала вблизи поверхности трения с учетом изменения его свойств за счет деформационного упрочнения и фрикционного нагрева [9]. Фрикционное взаимодействие учитывали в пределах единичного микровыступа на поверхности, который состоит из набора слоев, имеющих различные физикомеханические свойства (рис. 5).

Рвс. 5. Схема единичного выступа на поверхности трения, представленного в виде набора слоев [9]

Отклик системы на внешнее воздействие определяется свойствами слоев, составляющих микровыступ и законами взаимодействия между ними. Такой подход позволяет описывать и произвольно задавать градиент свойств в материале микровыступа, а также 'конструировать' микровыступ из нескольких материалов с различными свойствами. В процессе моделирования решали также одномерную тепловую задачу и на каждом шаге вычисления деформации находили распределение температуры по высоте микровыступа. Найденная таким образом температура использовалась для расчета изменения свойств материала и модификации закона взаимодействия для каждой пары слоев с учетом предыстории деформирования. Таким образом, модель позволяет в процессе расчета одновременно учитывать два конкурирующих процесса – деформационное упрочнение материала и его разупрочнение за счет фрикционного нагрева, а также необратимую пластическую деформацию.

Были выполнены расчеты единичного акта взаимодействия микровыступа и контртела в режиме сухого трения. Модифицированный ионным пучком слой представлялся в виде твердого покрытия на основном материале. Механические свойства основы, на которую нанесено твердое покрытие, приблизительно соответствовали свойствам стали 12Х18Н10Т. Расчеты проводили в предположении, что между материалом основы и покрытием существует идеальный контакт. Материал покрытия считался идеально упругим с модулем сдвига в два раза большим, чем модуль сдвига материала основы. Другие свойства покрытия были идентичны свойствам основного материала (таб. 2).

Материал	G, ГПа		Модуль 'пласти- ческий', ГПа		σ _{0.2} , МПа		р, кг/м ³	λ, Βτ/(м·K)	с, Дж.(кг·К)
	20°C	1300°C	20°C	1300°C	20°C	1300°C			
Сталь	77	32	0,5	0,5	220	20	7800	26	600
Жесткое покрытие	154	64	-	-	-	-	7800	26	600

Таблица 🕽	2. Физико	-механические	свойства	слоев	моделир	уемого	покрытия.
-----------	------------------	---------------	----------	-------	---------	--------	-----------

Моделирование проводили для имплантированного слоя толщиной от 2 до 50 мкм. Уменьшение модуля сдвига и предела текучести с ростом температуры задавали линейным законом, для построения которого использовали табличные данные. 'Пластический' модуль рассчитывали как отношение разности предела прочности и предела текучести к величине относительного удлинения после разрушения. Анализ температурных зависимостей относительного удлинения, пределов прочности и текучести показал, что для стали 12X18H10T 'пластический' модуль можно считать практически независимым от температуры и приблизительно равным 500MITa.

Моделирование выполняли для скорости скольжения 0,1 м/с и коэффициента трения 0,5. Микровыступ состоял из 100 слоев толщиной 1мкм. В начальный момент времени задавали такое сочетания начальной температуры и контактного давления, которые обеспечивали бы упругое деформирование образца. Величина контактного давления выбиралась из тех соображений, что при трении фактическая площадь касания составляет 0,001 – 0,01 номинальной площади. Поэтому среднее давление в пятне контакта может на два – три порядка превышать номинальное давление. Начальную температуру подбирали так, чтобы при заданном контактном давлении и скорости скольжения

в начальный момент времени образец деформировался упруго. Для скорости скольжения 0,1 м/с контактное давление было выбрано равным 200 МПа, начальная температура - 70⁰С.

На рис. 6 приведены результаты расчета деформирования микровыступа с покрытием толщиной 10 мкм при скольжении со скоростью 0,1м/с. Для иллюстрации процесса развития пластических сдвигов представлены зависимости пластических деформаций от расстояния до поверхности трения в различные моменты времени. Максимальный временной интервал, за который рассчитывалась деформа-

Часть I

ция, соответствует единичному взаимодействию пятна касания диаметром ~ 20 мкм. Кривая, соответствующая времени $t = 4 \cdot 10^{-6}$ с, отражает состояние перед началом интенсивной пластической деформации. В этот момент микровыступ деформируется квазиупруго, как единое целое, с незначительными пластическими савигами. Отсутствие пластической деформации в покрытии, на рисунке это область от 0 до 10 мкм, обусловлено идеально упругими свойствами покрытия. С течением времени вследствие выделения тепла в пятне контакта возрастает температура, что приводит к разупрочнению материала основы. Когда предел текучести материала подложки на границе «покрытие - основа» становится ниже действующего напряжения, в тонком подслое под покрытием начинается и интенсивно развивается пластический сдвиг (рис. 6, t = 4-10⁻⁵c), сопровождающийся деформационным упрочнением (рис. 6, $t = 1 \cdot 10^{-4}$ с, $2 \cdot 10^{-4}$ с). Следует отметить. что нарастание пластического сдвига происходит не монотонно, а скачкообраз-НО В МОМЕНТЫ ЛОКАЛЬНОГО ПОВЫШЕНИЯ НАПРЯЖЕНИЯ ВЫЗВАННОГО ПРОХОЖДЕНИЕМ ЧЕРСЗ границу раздела упругой сдвиговой волны. Видно (рис. 6), что с течением времени деформация основы существенно возрастает. Кроме того, толшина вовлеченного в пластическую деформацию подслоя также увеличивается от 10 до 50 мкм. Максимум деформации достигается на границе раздела с покрытием.

Для исследования влияния толщины твердого покрытия на поведение трибосистемы проведен расчет деформации при трении микровыступа с покрытиями толщиной от 2 до 50мкм. На рис. 7 приведены результаты расчетов деформации, соответствую-

шей моменту времени 2-10-4с. при скорости скольжения 0.1 м/с. Хорошо видно, что характер и величина распределения пластических сдвигов в областях, прилегающих покрытию, существенно различаются. При толщине покрытия 2 мкм материал интенсивно пластифицируется в подслое под покрытием. Максимум деформации достигается на границе раздела, далее величина пластической деформации монотонно убывает до глубины, приблизительно равной 40мкм. В образце с

покрытием толщиной 50 мкм максимум деформации также наблюдается на границе раздела, но в этом случае пластическая деформация на порядок меньше по величине и менее локализована, что обеспечивает существенно меньшие напряжения в материале основы и лучшую диссипацию энергии, подведенной к системе трения.

Эти результаты согласуются с экспериментальными данными, представленными в данной статье, из которых следует, что поведение модифицированного слоя при трении зависит от его толщины. Тонкое покрытие катастрофически изнашивается вследствие интенсивной пластической деформации материала основы, толстое – изнашивается постепенно до тех пор, пока его толщина обеспечивает сохранение несущей способности слоя за счет снижения уровня напряжений и температур в подслое. Увеличение прочностных свойств подложки будет уменьшать ее пластическую деформацию при трении и замедлять скорость накопления в ней дефектов и зарождения микротрещин.

Заключение

Приведенные данные экспериментальных исследований структуры и триботехнических свойств имплантированных ионами азота легированных сталей 08X18H10T и 40X13, а также численные расчеты показывают, что под твердым модифицированным слоем в матрице развивается пластическая деформация. Причивами пластической деформации матрицы являются ее пониженные, по сравнению с твердым слоем, механические характеристики, а также разупрочнение материала матрицы вследствие фрикционного нагрева. Интенсивный пластический сдвиг подповерхностного слоя может привести к разрушению покрытия вследствие несовместности деформаций в твердом слое и материале основы. Если прочностные свойства основы с ростом температуры в зоне фрикционного контакта остаются достаточно высокими или толщина покрытия обеспечивает такое снижение температуры и уровня действующих в подслое напряжений, которое не приводит к пластическому течению материала основы, то покрытие не будет разрушаться, а будет изнашиваться постепенно. Сделано заключение, что увеличение прочностных свойств подложки способствует уменьшению пластической деформации подложки при трении и увеличивает несущую способность модифицированного слоя.

Список литературы

- Витязь П.А., Ивашко В.С., Ильющенко А.Ф. и др. Теория и практика панесения защитных покрытий. Мн.: Беларуская навука (1998)
- Белый А.В., Кукареко В.А., Лободаева О.В., Таран И.И., Ших С.К. Ионно-лучевая обработка металлов, сплавов и керамических материалов. – Минск: Физико-технический институт, 1998 – 220 с.
- Byeli A.V., Kukareko V.A., Kolesnikova V.A., Shykh S.K. Structure-based selection of surface engineering parameters to improve wear resistance of heterogeneous nickel – and iron-based alloys // Wear. - 2003. - V. 255. - P. 527-534.
- Панин В.Е., Витязь П.А. Физическая мезомеханика разрушения и износа на поверхностях трения твердых тел // Физическая мезомеханика. – 2002. – Т. 5. – № 1. – С. 5–13.
- Витязь П.А., Панин В.Е., Белый А.В., Колубаев А.В. Механика пластической деформации и разрушения поверхностно упрочиенных твердых тел в условиях трения // Физическая мезомсханика. – 2002. – Т. 5. – № 1. – С. 15–28.
- Белый А.В., Кукареко В.А., Рубцов В.Е., Колубаев А.В. Сдвиговая пластическая деформация и износостойкость ионно-модифицированных материалов с твердыми слоями // Физическая мезомеханика. – 2002. – Т. 5. – № 1. – С. 41–47.
- Белый А.В., Кукарско В.А., Бояренко И В. Триботехнические характеристики мартенситных коррозионно-стойких сталей, подвергнутых ионно-лучевой обработке азотом // Трение и износ. – 1999. – Т. 20. – № 4. – С. 378–387.
- Рубцов В.Е., Колубаев А.В., Белый А.В., Кукарско В.А. Моделирование сдвиговой пластической деформации в приповерхностных слоях материалов с градиентом физикомеханических свойств при трении скольжения // Физическая мезомеханика. – 2003. – Т. 6. – № 3. – С. 57-61.
- Рубцов В. Е. Колубасв А. В. Моделирование сдвиговой деформации слоистого материала при трении // Труды II междунар. науч.-техн. конф. Барнаул: Изд – во Алтайского университета, 2001. С. 185-189.