УДК 539.37

ИССЛЕДОВАНИЕ УСТОЙЧИВОСТИ ДИСЛОКАЦИОННОЙ ПОДСИСТЕМЫ В Г.Ц.К. МАТЕРИАЛАХ

Колупасва С. Н., Вихорь Н. А., Попов Л. Е.

Томский государственный архитектурно-строительный университет, Томск vir@mail.tomsknet.ru

Исследование эволюции дислокационной подсистемы г.ц.к. металлов и гетерофазных материалов, упрочненных недеформируемыми частицами, проведем для области низких температур, где достаточно высокой подвижностью обладают только межузельные атомы, поэтому ограничимся рассмотрением аннигиляции дислокаций в результате осаждения на них деформационных точечных дефектов именно этого типа. Будем характеризовать дефектную подсистему кристалла одним уравнением баланса дислокаций. Будем полагать, что условия деформирования являются статическими, то есть приложенное напряжение т уравновешивается сопротивлением материала деформированию тв.

При достаточно медленной деформации однофазных материалов, когда процессы пластической деформации реализуются преимущественно дислокационными механизмами, сопротивление материала деформированию обусловлено, прежде всего, статическими препятствиями движению дислокаций $\tau_f = \tau_f + \alpha Gb\rho^{1/2}$, где ρ - плотность дислокаций, $\tau_f -$ напряжение трения, α – параметр, характеризующий интенсивность междислокационных взаимодействий, G – модуль сдвига, b – модуль вектора Бюргерса. В гетерофазном материале величина сопротивления материала деформированию определяется также сопротивлением движению дислокаций, связаным с накоплением геометрически необходимых дислокаций на частицах $\tau_{Or} = Gb/(\Lambda_p - \delta)$, Λ_p – расстояние между частицами, δ – диаметр частиц. Таким образом, условие «статического» характера режима деформирования для моно- и поликристаллов г.ц.к. металлов может быть записано в виде $\tau = \tau_f + \alpha Gb\rho^{1/2}$, для дисперсно-упрочненных материалов $\tau = \tau_f + \tau_{Or} + \alpha Gb\rho^{1/2}$.

Интенсивность генерации дислокаций в процессе пластической деформации г.ц.к. монокристаллов определяется накоплением дислокаций на дислокационных барьерах и может быть представлена следующим соотношением [1,2]: $G(\rho) = F / (Db)$, где F - параметр, характеризующий геометрию дислокационных петель и их распределение в зоне сдвига F=2..5, D - диаметр зоны сдвига. Учитывая, что при деформации поликристаллических материалов накопление дислокаций происходит не только на дислокациях, но и на межкристаллитных границах, для интенсивности генерации дислокаций

можно использовать соотношение [1-3]: $G(\rho) = \frac{F_1}{Db} + \frac{F_2}{db}$, где F_1 , F_2 – кристаллогеометрические параметры, учитывающие геометрию дислокационных петель и зерен, d –

рические нараметры, учитывающие теометрию дислокационных летель и зерен, и – средний диаметр кристаллита (зерна) в поликристалле.

В гетерофазном материале существуют дополнительные препятствия – частицы второй фазы, на которых происходит накопление дислокаций [1-4]: Часть І

$$G(\rho) = \frac{F}{Db} + \frac{\langle \chi \rangle \delta}{2\Lambda^2_{,b}} + \frac{1}{\Lambda_{,b}}.$$

Первое слагаемое соответствует накоплению дислокаций на дислокационных барьерах, второе – вблизи частиц, третье - в дипольных конфигурациях, соединяющих частицы.

Для интенсивности аннигиляции дислокаций можно записать [4-7]: $A(\rho) = 16q\tau_{dyn}\rho^{1/2}$ /(3Gb), где $\tau_{dyn} -$ напряжение, избыточное над статическим сопротивлением движению дислокаций τ_R , q – параметр, характеризующий интенсивность генерации межузельных атомов.

Предположим, что диаметр зоны сдвига определяется прочными дислокационными барьерами, в этом случае средний диаметр зоны сдвига определяется выражением [1, 2] $D = \frac{B}{Gb} \frac{\tau}{\rho}$, где B – параметр, определяемый вероятностью образования протяжен-

ных дислокационных барьеров. Здесь $B = 4\pi^2 / (\alpha_i \beta_i \xi)$, где $\xi \approx 0.5$ – доля дислокаций леса); $\beta_r \approx 0.14$ – доля реагирующих дислокаций леса; $\alpha_i \approx 0.5$ – геометрический фактор.

В случае статической деформации гетерофазных материалов, упрочненных недеформируемыми частицами, уравнение баланса дислокаций имеет вид [4]

$$\frac{d\rho}{da} = \frac{F}{Db} + \frac{\langle \chi > \delta}{2\Lambda_{gb}^{2}} + \frac{1}{\Lambda_{gb}} - q \frac{16\tau_{dvn}}{3Gb} \rho^{1/2}, \tag{1}$$

для однофазного г.ц.к. монокристалла [5, 7]

$$\frac{d\rho}{da} = \frac{F}{Db} - q \frac{16\tau_{se}}{3Gb} \rho^{3/2}.$$
(2)

для г.ц.к. поликристалла [7,8]

$$\frac{d\rho}{da} = \frac{F_1}{Db} + \frac{F_2}{db} - q \frac{16\tau_{abn}}{3Gb} \rho^{1/2}$$
(3)

Напряжение т_{фул} для статических условий деформирования представим в виде [5-7]

$$\mathbf{r}_{d=} = \alpha_{d=} G b \rho^{1/2} \,. \tag{4}$$

Уравнение (1) при имеющих физический смысл значениях параметров имеет в области действительных чисел одно устойчивое стационарное значение плотности дислокаций р₁ (аналитическое выражение для него является громоздким, поэтому оно не приведено).

Основные расчеты проведены при базовом наборе значений параметров, соответствующих монокристаллу никеля: $G = 10^5$ МПа, $b = 2,5 \ 10^{-10}$ м, $F = 4,7, <\chi > = 4, q = 1, \alpha_{dyn} = 0,1, \tau_f = 1$ МПа, $\delta = 5 \ 10^{-8}$ м, $\Lambda_p = 7 \ 10^{-7}$ м, $\alpha = 0,5$. Если значение параметра отличается от базовых значений, оно приведено в подписи к рисунку.

Величина стационарной плотности дислокаций ρ_5 уменьшается с увеличением параметров α , $\alpha_{dy\pi}$, τ_5 , Λ_p , и увеличивается с ростом диаметра частиц δ (рис. 1). Однако, при физически реальных значениях параметров модели значения стационарной плотности дислокаций достаточно высоки $10^{16} - 10^{17}$ м⁻². Следовательно, преимущественно имеет место деформационное упрочнение материала.

Рис. 1. Зависимость стационарной плотности дислокаций р, от параметров модели для деформации дисперсно-упрочненного материала на основе никеля при т_{dm}=α_{dm}Gbp^{1/2}.

На рис. 2-3 приведены зависимости плотности дислокаций от деформации $\rho(a)$, полученные при различных значениях исходной плотности дислокаций ρ_0 и различных значениях параметров модели.

В случае деформации монокристаллов однофазных материлов имеется два стационарных состояния [5,7], одно из которых р⁽¹⁾ = 0 является неустойчивым, второе

$$\rho_{s}^{(2)} = \left(\frac{FG - 8\alpha_{s} B\tau_{s}}{8\alpha_{om}\alpha BGb}\right)^{s}$$
 - устойчивым (рис. 4). При $\rho_{s}^{(i)} < \rho < \rho_{s}^{(3)}$ процессы генерации

дислокаций преобладают над процессами аннигиляции, и плотность дислокаций возрастает с деформацией, асимптотически приближаясь к $\rho_r^{(2)}$. При $\rho > \rho_*^{(2)}$ плотность дислокаций уменьшается в результате аннигиляционных процессов, также приближаясь к стационарной величине $\rho_*^{(2)}$. При некоторой стелени деформации наступает динамическое равновесие процессов генерации и аннигиляции дислокаций, и при дальнейшем увеличении деформации плотность дислокаций не изменяется.

Рис. 2. Зависимость плотности дислокаций от степени деформации при различных начальных значениях ρ_0 при α_{dyn} : a = 0,3; $\delta = 0,5$; при α : a = 0,1; $\delta = 0,5$; деформация дисперсноупрочненного материала на основе никеля при $\tau_{dyn} = \alpha_{dyn} Gb\rho^{1/2}$.

Рпс. 3. Зависимость плотности дислокаций ρ от степени деформации при различных начальных значениях ро при δ (м): $a - 10^{-7}$; $6 - 5 10^{-7}$; деформация дисперсно-упрочненного материала на основе никеля при $\tau_{dvm} = \alpha_{dym} Gb \rho^{-10}$

Рпс. 4. Зависимость плотности дислокаций от деформации при начальных значениях плотности дислокаций от 10^{10} до 10^{15} м⁻² при α_{dya} , $\alpha - 0,1; \delta - 0,33; \delta - 0,4; \epsilon - 0,5.$

Для поликристалла имеется одно устойчивое стационарное значение плотности дислокаций р₁. При р > р, плотность дислокаций с деформацией уменьшается, асимптотически приближаясь к стационарной величине; если р < р, плотность дислокаций увеличивается, приближаясь к р, (рис. 5).

Ршс. 5. Зависимость плотности дислокаций от степени деформации при начальных значениях плотности дислокаций от 10^{12} м^2 до 10^{15} м^2 для поликристалла никеля (статическая деформация) при $\alpha_{dyn}=0,5$ и напряжении трения τ_f (МПа): *a*, *e* = 0,001; *б*, *z* = 1000. Размер зерна d (мкм): *a*, *b* = 100, *e*, *z* = 10.

Г.

Таким образом, при статической деформации г.н.к. материалов, наблюдается, как правило, деформационное упрочнение, и плотность дислокаций приближается к стационарной величине. Для моно- и поликристаллов эта величина порядка 10¹³...10¹⁴ м⁻², для гетерофазных материалов -10¹⁶...10¹⁷ м⁻² В локальных областях кристалла с высокой плотностью дислокаций может иметь место преобладание аннигиляционных процессов и деформационное разупрочнение.

Исследуем эволюцию дислокационной подсистемы для деформирующих воздействий, удобных для экспериментального воспроизведения: 1) постоянной величины приложенного напряжения сдвига r, 2) постоянной нагрузки при одноосянной растяжении и сжатии.

Для условий постоянной величины приложенного напряжения сдвига (т=*const*) ве-

личину избыточного напряжения представим в виде [7]: $\tau_{dyn} = \tau - \tau_f - \alpha Gb \rho^{1/2}$ для г.ц.к. металлов и для дисперсно-упрочненных материалов $\tau_{dyn} = \tau - \tau_f - \tau_{Or} - \alpha Gb \rho^{1/2}$.

Уравнение баланса дислокаций в дисперсно-упрочненных материалах с недеформируемыми частицами (1) при постоянном напряжении имеет два стационарных состояния:

$$\rho_{s}^{*,*} = \left(\frac{A_{3}A_{4} \pm \sqrt{(A_{3}A_{4})^{2} - 4A_{2}(A_{1} + A_{3}A_{5})}}{2(A_{1} + A_{3}A_{5})}\right)^{4},$$
the $A_{s} = \frac{FG}{B\tau}; \quad A_{s} = \frac{<\chi > 5}{2\Lambda^{2}b} + \frac{1}{\Lambda b}; \quad A_{3} = \frac{q16}{3Gb}, \quad A_{4} = \tau - \tau_{f} - \tau_{c}, \quad A_{5} = \alpha Gb.$

Анализ показал, что возможны три случая. В первом случае, при низких значениях т оба значения стационарных плотностей дислокаций р¹ и р² являются комплексными, и стационарные состояния дислокационной подсистемы отсутствуют (рис. 6,*a*). В этом случае при любых имеющих физический смысл значениях параметров модели и при любых начальных значениях ρ_0 плотность дислокаций в процессе деформации возрастает.

Рис. 6. Зависимость плотности дислокаций от степени деформации при различных начальных значениях ρ₀ при τ (ΜΠа): α – 1000; 6 – 1350; ε – 1700; деформация гетерофазного материала на основе никеля при τ = const.

Во втором случае, при высоких значениях τ оба корня являются действительными и различными (рис. 6,*в*). Стационарное состояние, характеризуемое плотностью ρ_{τ}^{1} , устойчиво, ρ_{τ}^{2} - неустойчиво.

При плотностях дислокаций близких к ρ_s^2 , вследствие неоднородности дислокационной подсистемы плотность дислокаций в локальных областях может быть выше или ниже стационарной величины. В областях, где $\rho < \rho_s^2$, плотность дислокаций будет монотонно уменьшаться, асимптотически приближаясь к стационарному значению ρ_s^1 , соответствующему устойчивому равновесию. В областях, где $\rho > \rho_s^2$, будет происходить неограниченное возрастание плотности дислокаций, пока существует кристаллическая решетка. Дислокационная подсистема распадается на две "фазы" с различной плотностью дислокаций. Вместе с тем, гетерофазный материал «распадается» на област ти кристаллического состояния и области аморфоподобного состояния.

При некотором значении приложенного напряжения оба стационарных значения совпадают, $\rho_{i}^{l} = \rho_{i}^{l} = \rho_{i}$. Эту ситуацию иллюстрируют рисунок 6,6. При совпадении ρ_{i}^{l} и р² заключенная между ними область, в которой плотность дислокаций монотонно уменьшается с деформацией, исчезает. При плотностях дислокаций р < р, плотность дислокаций асимптотически приближается к стационарному значению. При плотностях дислокаций p > p, плотность дислокаций - возрастает. В гетерофазном материале со средней плотностью дислокаций р≈р, в локальных областях, где р>р,, с увеличением деформации будет происходить нарастание плотности дислокаций вплоть до достижения состояний, близких к аморфным. При этом дислокационная подсистема дисперсно-упрочненного материала ведет себя асимметрично по отношению к флуктуациям плотности дислокаций разного знака. При локальных уменьшениях плотности дислокаций флуктуации "рассасываются", и дислокационная подсистема возвращается в стационарное состояние, тогда как при отклонениях плотности дислокаций в сторону увеличения дислокационная подсистема неограниченно удаляется от стационарного состояния. Поэтому возникновение каждой флуктуации с р > р, сопровождается появлением новой высокодефектной области. С ростом деформации число таких областей постоянно возрастает.

Рше. 7. Зависимость плотности дислокаций от степени деформации при τ= 120 МПа, α_{4у0}=0.33 и напряжении трения τ₁ (МПа): *a* - 1; *b* - 10 и различной начальной плотности дислокаций, деформация монокристалла никеля. Таким образом, в зависимости от соотношения между плотностью дислокаций и приложенным напряжением кинетика дислокационной подсистемы гетерофазного материала может иметь существенно различный характер (рис. 6).

С увеличением деформирующего напряжения *г* уменьшается значение плотности дислокаций, соответствующей устойчивому стационарному состоянию и увеличивается значение ρ_s^2 , соответствующее неустойчивому стационарному состоянию.

При некотором значении т,

определенном для каждого конкретного набора значений параметров, характеризующих дисперсно-упрочненный материал, оба стационарных значения плотности дислокаций – устойчивое и неустойчивое - совпадают, то есть область динамического разупрочнения отсутствует.

В случае деформации монокристалла никеля при постоянном приложенном напряжении имеется два стационарных значения плотности дислокации, одно - тривиальное устойчивое, второс – ненулевое неустойчивое (рис. 7). При любой исходной плотности дислокаций можно так подобрать деформирующее напряжение т, чтобы добиться желаемого режима деформирования (рис. 8).

Рассмотрим статическую деформацию г.ц.к. материалов, которая осуществляется при постоянной нагрузке (*P*=*const*). В условиях одноосного **растяженыя** цилиндрического образца при постоянной нагрузке напряжение возрастает с изменением поперечного сечения образца в процессе деформации по закону $\tau = \tau_0 \exp(a/k)$, где *k* – множитель Закса; в дальнейших расчетах принимаем *k*≈2. Соответственно, $\tau_{dym} = \tau_0 \exp(a/k) - \tau_f - \tau_{Or} - \alpha Gb \rho^{1/2}$.

Часть І

Для выявления основных тенденций развития дислокационной подсистемы гетерофазного материала, деформируемого при постоянной нагрузке, найдем изоклины нуля, то есть кривые, в точках которых $d\rho/da = 0$. Эти кривые будут разбивать фазовое пространство на области, в которых производная будет иметь разные знаки, и поведение интегральных кривых $\rho(a)$ будет иметь различный характер.

В зависимости от значений начального напряжения то в области действительных чисел может быть либо две изоклины нуля либо ни одной (рис. 9, a, б).

Рис. 9. Зависимость плотности дислокаций от деформации при постоянной нагрузке при то (МПа) *a* - 1000; *b* - 2000; *s* - 1300; *c* - 2500; *a*, *b* - растяжение гетерофазного материала на основе никеля, *s*, *c* - сжатие.

Рис. 10. Зависимость плотности дислокаций от деформации при различной начальной плотности дислокаций. Деформация при постоянной нагрузке (P=const) при различных τ₀ (МПа): a − 1,5; б − 48; e − 55; c − 350 (τ_f = 10 МПа, α_{dyn} = 0,1, монокристалл никеля).

При одноосном сжатые напряжение изменяется по закону $\tau = \tau_0 \exp(a/k)$ и, соответственно, $= \tau_0 \exp(a/k) \cdots \tau_f - \tau_{Or} - \alpha Gb \rho^{1/2}$. В этом случае число изоклин нуля в области действительных чисел в зависимости от значений параметров – две или ни одной (рис. 9,6,8). Зависимость изоклин от деформации при одноосном сжатии и растяжении имеет разный характер: с увеличением деформации при сжатии значение первой изоклины ρ^1 возрастает, при растяжении - уменьшается Значение изоклины ρ^2 с ростом деформации уменьшается при сжатии и увеличивается при растяжении. При этом область динамического разупрочнения между изоклинами с ростом деформации при сжатии сужается, а при растяжении – расширяется. При сжатии появление двух изоклин происходит в области более высоких напряжений, чем при растяжении.

При низкой исходной плотности дислокаций 10⁸...10⁹ м² при напряжениях т₀, характерных для статической деформации, плотность дислокаций с деформацией возрастает на один-два порядка величины, при этом скорость возрастания логарифма плотности дислокаций остается постоянной (рис. 10,a), то есть плотность дислокаций увеличивается с деформацией по экспоненциальному закону. При некоторой степени деформации (в зависимости от исходной плотности дислокаций) равновесие между процессами генерации и аннигиляции дислокаций нарушается в пользу последней, и плотность дислокаций начинает уменьшаться. Чем меньше начальная плотность дислокаций (эта стадия может отсутствовать) и тем интенсивнее затем происходят процессы аннигиляции (рис. 10,6,e). В случае высокодефектных кристаллов при напряжениях, характерных для статических условий испытания, происходит динамическое разупрочнение и очистка материала от дислокаций (рис. 10,e).

Сравнение результатов моделирования поведения дислокационной подсистемы гетерофазных материалов с результатами исследований для однофазных материалов показывает, что общий характер поведения дислокационной подсистемы в этих материалах при статической деформации для $\tau_{dm} = \alpha_{dm} G b \rho^{1/2}$ аналогичен. И для тех, и для других наблюдается одно ненулевое устойчивое стационарное состояние, и хотя в монокристаллах имеется еще одно нулевое стационарное состояние, фазовые портреты для этих материалов имеют подобный характер – при малых и средних значениях плотностей дислокаций наблюдается упрочнение, при высоких значениях плотности дислокаций может иметь место деформационное разупрочнение материала.

При деформации в условиях постоянного приложенного напряжения или постоянной нагрузки в закономерностях поведения дислокационной подсистемы в гетерофазных материалах в сравнении с монокристаллами г.ц.к. металлов наблюдаются сушественные различия. При т=const в однофазных материалах существует одно ненулевое неустойчивое стационарное состояние и одно нулевое устойчивое, в гетерофазных материалах два ненулевых стационарных значения плотности дислокаций. При высоких значениях напряжения между двумя стационарными значениями плотности дислокаций существует область разупрочнения, а при плотностях дислокаций ниже и выше стационарных значений происходит увеличение плотности дислокаций с деформацией и упрочнение гетерофазного материала. С уменьшением деформирующего напряжения область динамического разупрочнения сужается и при напряжениях т, характерных для статических условий деформирования, стационарные состояния отсутствуют, и наблюдается только деформационное упрочнение. При деформации монокристаллов г.ц.к. металлов для любой исходной плотности дислокаций в материале можно подобрать деформирующее напряжение, при котором наблюдается разупрочнение или упрочнение материала в процессе деформации.

Поскольку дислокации по кристаллу распределены неоднородно, в одних локальных объемах плотность дислокаций оказывается выше, в других – ниже. Деформирующее напряжение также неоднородно по образцу, оказываясь выше вблизи концентраторов напряжения. Следовательно, при средней по образцу плотности дислокаций, близкой к неустойчивому стационарному значению, можно ожидать расслоения дислокационной подсистемы кристалла – нарастания плотности дислокаций в одних областях и убывания в других.

Список литературы

- 1. Попов Л.Е., Кобытев В С., Ковалевская Т.А. //Изв. вузов. Физика. 1982. № 6. С. 56-82.
- Попов Л.Е., Кобытев В.С., Ковалевская Т.А. Пластическая деформация сплавов. М.: Металлургия, 1984. 182 с.
- 3. Ashby M.F. //Phil. Mag. 1970. V. 21. No 170. P. 399-424.
- 4 Ковалевская Т.А., Виноградова И.В., Попов Л.Е. Математическое моделирование пластиче-

ской деформации гетерофазных сплавов. Томск: Изд-во ТГУ, 1992. 168 с.

- Иопов Л.Е., Пудан Л.Я., Колупаева С.Н. и др. Математическое моделирование пластической дсформации. Томск: Изд-во Том. ун-та, 1990. 185 с.
- Колупаева С.Н., Старенченко В.А., Попов Л.Е. Неустойчивости пластической деформации кристаллов. Томск: Изд-во Том. ун-та, 1994. 301 с.
- Попов Л.Е., Колупаева С.Н, Вихорь Н.А. Математическое моделирование эволюции дислокационной подсистемы г.ц.к. кристаллов при различных деформирующих воздействиях /Компьютерный анализ данных и моделирование. Сборник научных статей V Международной конференции. Ч.3. - Минск, 1998, - С. 182-187.

МЕХАНИЧЕСКИЕ СВОЙСТВА ПОЛИМЕРНЫХ КОМПОЗИТОВ НА ОСНОВЕ АМИНОСТИРОЛА

Палистрант Н. А.

Международная Лаборатория Твердотельной Электроники и Сверхпроводимости Института Прикладной Физики Академии Наук Молдовы, Кишинэу, Республика Молдова

natpal@phys.asm md; palistrant@vahoo.com

Полимерные сшивающиеся слои на основе аминостирола были получены методом радикальной полимеризации. Изучались механические свойства соединений, влияние химического состава и внешних факторов (радиации, температуры, старения(хранения)) на эти свойства, картины деформирования вокруг отпечатков. Получено, что при облучении механические параметры значительно возрастают. Также обнаружено, что при индентировании отпечатки остаются пластичными и не обнаруживается трещин и разрушений вплоть до большкх нагрузок (200 г). Высказана гипотеза о механизме деформирования полимерных слоев.

1. ВВЕДЕНИЕ

Полимерные материалы широко используются в качестве функциональных слоев микроэлектронных датчиков. Например, новые композиты на основе 4для аминостирола могут использоваться в качестве сред для тиражирования и хранения голографической информации (голографических копий). С целью дальнейшего улучшения рельефа изображения полимерные сшивающиеся слои, содержащие химически активные связи (звенья) аминостирола, были получены нами методом радикальной полимеризации [1-6]. Основной особенностью полимеров, отличающей их от низкомолекулярных соединений, являются большие значения молекулярных масс. Длина цепи полимеров намного превышает их поперечные размеры. В зависимости от условий в полимере определенного химического строения могут формироваться надмолекулярные структуры различных типов, которые обеспечивают различные комплексы механических свойств и различную прочность материалов. Существенное влияние на механические свойства оказывает также соотношение между химическими компонентами вещества, введение определенных добавок (пластификаторов). Пластификатор, обволакивая те или иные группы полимера, не может не оказывать влияния на внугримолекулярное взаимодействие звеньев молекулы, на их потенциальные барьеры вращения, что