УДК 677.017.636.2

ХАРАКТЕРИСТИКА ПРИБОРОВ, ПРИМЕНЯЕМЫХ ДЛЯ ОПРЕДЕЛЕНИЯ ВОДОПРОНИЦАЕМОСТИ ТЕКСТИЛЬНЫХ МАТЕРИАЛОВ

Ивашко Е.И., маг., Панкевич Д.К., доц., Махонь А.Н., доц., Юрьева А.М., маг. Витебский государственный технологический университет, г. Витебск, Республика Беларусь

Ключевые слова: водопроницаемость, метод, показатель, прибор, стандарт.

Реферат. В комплексе разнообразных свойств материалов, влияющих на качество изделий из них, способность сопротивляться проникновению воды играет важную роль. В текстильном материаловедении для характеристики этой способности наиболее широкое распространение получили показатели водоотталкивания, водоупорности и водопроницаемости. Показателем водопроницаемости принято характеризовать наивысшую степень защиты от воды. В статье рассмотрены приборы для определения водопроницаемости текстильных материалов с позиции их способности удовлетворять требованиям отечественных и международных стандартов и выявлять водопроницаемость текстильных материалов различного назначения в необходимом диапазоне гидростатических давлений. По результатам анализа сделан вывод о современном состоянии приборной базы определения водопроницаемости.

Наиболее полно методы и средства определения показателя водопроницаемости представлены в ГОСТ 12.4.263-2014 «Система стандартов безопасности труда. Материалы для средств индивидуальной защиты с резиновым или пластмассовым покрытием. Метод определения водопроницаемости» [1].

В современной редакции [1] термин «водопроницаемость» определяется как «способность материала пропускать воду при определенном давлении». Характеризуется водопроницаемость наименьшим давлением воды, при котором на противоположной стороне образца становятся заметны следы протекания. Изменяется этот показатель в широких пределах в зависимости от вида материала и его значение может составлять для плащевых и курточных тканей из синтетических нитей с пленочным покрытием в один слой 1,3 КПа [2], а для мембранных материалов – свыше 290 КПа [3].

По состоянию образца при испытании приборы и методы определения водозащитной способности материалов подразделяют на обеспечивающие испытания в статических или динамических условиях. Первая группа — наиболее многочисленная, объединяет методы, при которых испытуемый образец, подвергаясь воздействию воды, остается неподвижным. Вторую группу составляют методы, при которых образец материала (изделие) подвергается механическим воздействиям, имитирующим условия эксплуатации [4].

Современные приборы для определения водозащитных свойств текстильных материалов различны по принципу действия и исполнению и обеспечивают испытания в соответствии с одним из методов, условия которых регламентированы стандартами. Универсальность прибора может быть оценена количеством стандартов, выполнение условий которых он обеспечивает.

Традиционно методы и средства определения показателей свойств материалов разделяются по виду материала (текстильное полотно, кожа натуральная или искусственная и т.д.). Создание новых материалов с высоким уровнем водозащитных свойств приводит к тому, что метод и средство определения водопроницаемости подбирается скорее по принципу технической возможности регистрации значений показателя, чем по назначению или волокнистому составу материала. Такое разделение характерно для методов определения водопроницаемости, применяемых за рубежом: DIN EN ISO 20811 – применяется для материалов, выдерживающих гидростатическое давление до 15 КПа; DIN EN ISO 20812 – до 100 КПа; DIN EN ISO 20813 – до 200 КПа. Японский стандарт, регламентирующий испытания материалов гидростатическим давлением, также предлагает группировку методов по мак-

Витебск 2019 *271*

симальному давлению: JIS L 1092 A – до 19,6 КПа; JIS L 1092 B – до 294 КПа. Подобное разделение принято и в ГОСТ 12.4.263-2014, модифицированном по отношению к международному стандарту ИСО 1420-87 с учетом потребностей экономики региона и включающем большинство известных методов и средств определения водопроницаемости. Характеристика некоторых приборов для определения водопроницаемости текстильных материалов, составленная по результатам изучения источников [5], [6], [7], [8], представлена в таблице 1. Характеристика приборов

Таблица 1 – Характеристика приборов для определения водонепроницаемости текстиль-

ных материалов

ных материалов			
Марка при- бора	Изготовитель	Техническая характеристика	Перечень стандартов
UGT – 7046 - HS	UGNlab Co. Ltd.	максимальное давление – 196 КПа, скорость изменения давления – регулируется, вес – 128 кг	JIS L 1092; DIN 53 886; ГОСТ 12.4.263-2014
UM-3241C	UGNlab Co. Ltd.	максимальное давление — 100 КПа, скорость увеличения давления — 0,98 КПа /сек или 5,9 КПа /сек, вес — 50 кг	ГОСТ Р 51553; EN 20811; DIN 53886; ГОСТ 12.4.263-2014
Suter tester	Quailitest	максимальное давление – 98 КПа, скорость изменения давления регулируется, вес – 5.9 кг	AATCC 127; ΓΟCT 12.4.263-2014
MT-167	Метротекс	максимальное давление — 19,6 КПа, скорость изменения дав- ления — 0,59; 0,98; 5,9 КПа /сек	ГОСТ 3816; ИСО 811; ГОСТ 12.4.263-2014
MT-158	Метротекс	максимальное давление – 11,8 КПа, вес – 10 кг	ГОСТ 3816; ГОСТ 12.4.263-2014
DVT TSG	Devotrans	диапазон давления: 100-200 КПа; скорость изменения давления регулируется вручную	ISO 811;EN ISO 20811; DIN 52123; EN 1734;EN 1928; ΓΟCT 12.4.263-2014
RF4408P Hydrostatic Head Tester	RefondTex	диапазон давления: 0-300 КПа; скорость изменения давления регулируется. Сменные испытательные головки. Два режима испытаний – динамический и статический. вес –75 кг	AATCC 127; BS EN 20811; BS 3424-26 (29A, 29C); BS 3321; ERT120-2-02; GB/T 4744; JIS L1092A; ERT 120-1; ERT 160-0; BS 3321; JIS L1092; BS EN 20811; ASTM D751; WSP 080.6.R4; IST 080.6 (01); IST 080.4 (01); ΓΟCT 12.4.263-2014

Как видно из таблицы 1, современные приборы для определения водопроницаемости текстильных материалов различаются величиной минимального и максимального гидростатического давления, возможностью регулирования скорости подачи давления, весом и габаритами, количеством стандартных методов, соответствие которым обеспечивают. При этом широта модельного ряда связана в первую очередь с различиями стандартных методик не по принципу определения показателя, а по условиям испытаний. В первую очередь это касается размера испытательной ячейки. Например, только в ГОСТ 12.4.263-2014 регламентировано четыре различных диаметра испытательной ячейки для восьми различных методов: 100 мм, 116 мм, 31,5 мм, 35,6 мм. Второй причиной разнообразия приборов являются различия в регламентируемой скорости подачи давления. Преодоление этих препятствий на пути к увеличению степени универсальности приборов технически возможно при использовании сменных испытательных головок и обеспечении автоматической регулировки скорости подачи давления.

Наибольшую универсальность прибора заявляют производители RF4408P Hydrostatic Head Tester, который благодаря наличию сменных испытательных головок может реализовать условия испытаний в соответствии с 15 стандартами, в том числе отечественными, стандартами Великобритании, Германии, Японии, США. В отличие от других рассмотрен-

272 Витебск 2019

ных приборов, он позволяет проводить испытания в более широком диапазоне давлений, который включает большинство возможных для текстильных материалов значений измеряемой величины.

Список использованных источников

- 1. Система стандартов безопасности труда. Материалы для средств индивидуальной защиты с резиновым или пластмассовым покрытием. Метод определения водопроницаемости: ГОСТ 12.4.263-2014. Введ. 01.12.2015. Москва : ФГУП «Стандартинформ», 2015. 12 с.
- 2. Стельмашенко, В. И. Материалы для одежды и конфекционирование : учеб. для ВУ-Зов / В. И. Стельмашенко, Т. В. Розаренова. – Москва : Издательский центр «Академия», 2010. – 320 с.
- 3. Панкевич, Д. К. Ассортимент и свойства мембранных материалов, используемых в производстве одежды для активного отдыха и спорта / Д. К. Панкевич // Качество товаров: теория и практика: материалы докладов международной научно-практической конференции, Витебск, 15-16 ноября 2012 г.: УО «ВГТУ». Витебск, 2012. С. 204—206.
- 4. Панкевич, Д. К. Оценка эксплуатационных свойств композиционных слоистых текстильных материалов для водозащитной одежды: дис. ... канд. техн. наук: 05.19.01 / Д. К. Панкевич; УО «ВГТУ». Витебск, 2017. 244 с.
- 5. Официальный сайт научно-исследовательского института текстильных материалов «Hohenshtein» [Электронный ресурс]. Режим доступа: http://www.hohenstein.de/en/testing/textile_testing/textile_testing_1.xhtml. Дата доступа: 21.09.2019.
- 6. Официальный сайт предприятия «Метротекс» [Электронный ресурс]. Режим доступа: http://www.metrotex.ru/. Дата доступа: 08.12.2018.
- 7. Официальный сайт предприятия «Quailitest» [Электронный ресурс]. Режим доступа: http://www.worldoftest.com/textile.htm. Дата доступа: 08.09.2019.
- 8. Официальный сайт предприятия «UGNlabCo. Ltd» [Электронный ресурс]. Режим доступа: http://ugnlab.ru. Дата доступа: 09.09.2019.

УДК 645.135

ИСПОЛЬЗОВАНИЕ ПРИНЦИПОВ КОМПЬЮТЕРНОГО ЗРЕНИЯ ДЛЯ ОЦЕНКИ КАЧЕСТВА ТЕКСТИЛЬНЫХ МАТЕРИАЛОВ

Карпушенко И.С., ст. преп.

Витебский государственный технологический университет, г. Витебск, Республика Беларусь

<u>Ключевые слова:</u> оценка качества, текстильные материалы, цифровое изображение, программное обеспечение.

Реферат. Используя общие принципы компьютерного зрения и опыт их применения для оценки качества текстильных материалов, предложен метод оценки степени износа коврового покрытия. Доказана информативность метода и его принципиальная пригодность для оценки показателей эксплуатационных свойств текстильных материалов и изделий с ворсовой поверхностью.

На современном этапе развития предприятия текстильной отрасли имеют конкурентные преимущества, если в состоянии реализовать непрерывно корректируемую технологию, имеют возможность обновлять и совершенствовать свою производственную базу, обеспечивая оперативную смену ассортимента выпускаемой продукции. В этих условиях существенно повышается актуальность оперативного контроля качества сырья и готовой про-

Витебск 2019 *273*