Использование лабораторная испытательная машина со встроенным профилометром IMAL IBX600 при ежесменном контроле позволяет существенно снизить время проведения испытаний, что позволяет оперативнее замечать несоответствие продукции установленным нормам и вносить необходимые изменения в технологический процесс.

УДК 681.586.772

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ СЕНСОРА ОТКРЫТОГО ТИПА

Джежора А.А., проф., Завацкий Ю.А., ст. преп., Коваленко А.В., ст. преп., Статковский Н.С., ст. преп.

Витебский государственный технологический университет, г. Витебск, Республика Беларусь

Ключевые слова: датчик, моделирование, сенсор, зона контроля.

Реферат. В работе строится математическая модель сенсорного датчика открытого типа. Созданная модель позволяет проводить обоснованный выбор конструкции и параметров датчика, определяет метрологические характеристики измерительного устройства, решать вопрос технической осуществимости поставленной задачи. Присутствие экрана над контролируемым объектом в области критической толщины контролируемого материала приводит к потере чувствительности датчика к диэлектрической проницаемости или двузначности результата измерения. Показывается, что для устранения эффекта двойственности измерения необходимо проводить за пределами аномальной области.

Электроемкостные сенсоры используют в неразрушающем контроле физических, физико-механических свойств материалов, таких как влагосодержание, пористость, влажность, плотность. Конструкция сенсора открытого типа представляет собой многосекционный накладной измерительный конденсатор, электроды, которого расположены на диэлектриче-

Рисунок 1 - сенсор открытого типа

ской подложке (рис. 1).

Электрическое поле, создаваемое высокопотенциальными электродами 1, проникая через материал, замыкается на низкопотенциальных электродах 2. Поле не ограничено в пространстве [1]. Одним из возможных способов оценки глубины зоны контроля является изучение того, насколько глубоко электрическое поле проникает в контролируемую среду, посредством математического моделирования. Координата z, в которой достигается 97 % асимптотической емкости сенсора, определяется как глубина зоны контроля [2]. Изменяя геометрические размеры электродов, можно повлиять на глубину зоны контроля сенсора, его чувствительность, динамический диапазон и уровень

сигнала. Практическое исполнение сенсора показывает, что, несмотря на ряд математических моделей, существуют несоответствия между расчетными и измеренными значениями импедансов. Самыми важными вкладчиками, приводящими к несоответствиям между расчетами и реальными измерениями, являются толщина электродов. Эти несоответствия усиливаются, если толщина подложек b имеет размеры сравнимые с межэлектродными зазорами $\Delta \mathbf{r} = \mathbf{r}_1 - \mathbf{r}_0$. Несоответствия между расчетными и измеренными значениями импедансов затрудняют интерпретацию полученных результатов, снижают эффективность электроемкостного способа контроля. Цель работы заключается в повышении точности расчета параметров многосекционного сенсора открытого типа, оптимизации конструктивных параметров, таких как глубина зоны контроля, сила сигнала и так далее.

Математическая модель учитывала следующее:

- основанием подложки служит изотропный однородный материал;

- материал подложки не обладает проводимостью;

- материал подложки не обладает гидрофобными свойствами;

– линейные размеры сенсора во много раз меньше длины волны электромагнитного поля;

- длина электродов намного больше их поперечных размеров;

граница раздела слоев совпадает с плоскостью электродов или с поверхностью силовых линий, или эквипотенциалей.

Реакция поля чувствительных элементов сенсора (электродов) на объекты, вносимые в поле, зависит от ближайшего окружения. Наибольшие изменения происходят под влиянием самого близкого слоя, расположенного у электродов, – подложки. Для стороны электрода, обращенной к подложке, поверхностная плотность заряда иная, чем на стороне электрода, обращенной к контролируемому материалу.

Поверхностную плотность зарядов на стороне электрода, обращенной к контролируемому материалу (верхняя пара электродов) обозначим – $\sigma_k(x)$, на стороне электрода, обращенной к подложке – $\tau_k(x)$. Индекс k=1 соответствует поверхностной плотности заряда на высокопотенциальных электродах, k=2 – на низкопотенциальных электродах. Очевидно, в силу симметрии имеет место и электрическая симметрия: $\sigma_k(x) = \sigma_k(-x)$; $\tau_k(x) = \tau_k(-x)$; k=1,2.

Положим, что система зеркально-симметричных электродов (в соответствии с рисунком 1) находится в трехслойной среде:

$$\begin{cases} \varepsilon_3, ecnu \ b + \mu + h_1 \le x \le b + \mu + h_1 + h; \\ \varepsilon_2, ecnu \ b < x \le b + \mu + h_1; \\ \varepsilon_1, ecnu \ 0 \le x \le b. \end{cases}$$

Наведенные на границе раздела слоев связанные заряды учтем, используя метод зеркальных отображений [3]. Согласно этому методу наведенные связанные заряды заменяются сосредоточенными зарядами, отраженными от границы раздела слоев. Эти заряды рассчитываются через коэффициенты пропускания β_{12} , β_{21} при переходе поля из первой среды во вторую, и наоборот, коэффициенты отражения λ_{12} , λ_{21} на границе раздела первой среды со второй и, наоборот [3]:

$$\beta_{12} = \frac{2\epsilon_2}{\epsilon_1 + \epsilon_2} \;, \quad \beta_{21} = \frac{2\epsilon_1}{\epsilon_1 + \epsilon_2} \;, \quad \lambda_{12} = \frac{\epsilon_1 - \epsilon_2}{\epsilon_1 + \epsilon_2} \;, \quad \lambda_{21} = \frac{\epsilon_2 - \epsilon_1}{\epsilon_1 + \epsilon_2} \;\;.$$

Аналогичным образом рассчитываются коэффициенты и на границе раздела второй и третьей среды. Поле над подложкой создается не только зарядами нижней, верхней пары сенсора, но и их отражениями. Из-за громоздкости выражений для потенциалов точек на поверхностях электродов, в статье приводится лишь частный случай для потенциала на поверхности электродов, обращенной к контролируемому диэлектрику. С учетом суперпозиции полей всех зарядов выражение для потенциала при $0 \le x_j \le r_0$, $r_1 \le x_j \le r$, $z = b + \mu$ примет вид:

$$\sum_{j=1}^{2} \sum_{m=0}^{Z} \int_{\alpha_{i}}^{\beta_{i}} \sigma_{j1}(t) \ln \left| (2rm \pm t)^{2} - x_{j}^{2} \right| dt + \sum_{k=1}^{2} \sum_{m=0}^{Z} \frac{\lambda_{21}}{2} \int_{\alpha_{i}}^{\beta_{i}} \sigma_{k}(t) \ln \left| (2rm \pm t \pm x_{j})^{2} + 4\mu^{2} \right| dt + \sum_{k=1}^{2} \sum_{m=0}^{Z} \frac{\lambda_{21}}{2} \int_{\alpha_{i}}^{\beta_{i}} \tau_{k}(t) \ln \left| (2rm \pm t \pm x_{j})^{2} + \mu^{2} \right| dt + \sum_{k=1}^{2} \sum_{m=0}^{Z} \frac{\lambda_{21}}{2} \int_{\alpha_{i}}^{\beta_{i}} \tau_{k}(t) \ln \left| (2rm \pm t \pm x_{j})^{2} + \mu^{2} \right| dt = -\varepsilon_{2}\varepsilon_{0} 2\pi V_{k} ,$$

где координаты точек на электродах определяются выражениями: $x_i = (\alpha_i + \beta_i)/2$.

Такие же выражения записывались и для нижней поверхности электродов. С учетом, что общий заряд сенсора равен нулю, составляется система интегральных уравнений. Решение системы интегральных уравнений дает значения функций распределения поверхностных

зарядов $\sigma_k(x)$, $\tau_k(x)$. Межэлектродная емкость C₁₂, на единицу длины электродов определяется выражением:

$$C_{12} = \left(\sum_{i=n_1+1}^{n_1+n_2} \sigma_{i2} l_i + \sum_{i=n_1+n_2+n_3+1}^{n_1+n_2+n_3+n_4} \tau_{i2} l_i\right) / (V_1 - V_2).$$

rge $l_i = \beta_i - \alpha_i$

Проверка адекватности модели реальным конструкциям проводилась на датчиках с металлизацией 0,5 (отношение площади электродов к полной площади датчика). Электроды вытравливали на двустороннем фольгированном тефлоне (PTFE) толщиной 1 мм. Толщина медного покрытия составляла 35 μ м. Ширина потенциальных электродов $2r_0 = 2$ мм и число секций n = 6. Погрешность расчета $\delta C = 2,5$ %.

Результаты моделирования электрического поля сенсора для трехслойной среды $\varepsilon_1 = 2,3,$

Рисунок 2 – Стрелки напряженности и эквипотенциальные линии электрического поля для сенсора с b = 1 мм и r = 4 мм

 $\varepsilon_2 = 3$, $\varepsilon_3 = 1$ представлены на рисунке 2. На рисунке 3 результат расчета поверхностной плотности заряда на электродах сенсора.

Рисунок 3 – Распределение поверхностной плотности заряда на электродах: 1, 2 – со стороны контролируемого диэлектрика; 3, 4 – со стороны подложки

Созданная модель позволяет проводить обоснованный выбор конструкции и параметров сенсора, определяет метрологические характеристики измерительного устройства, решает вопрос технической осуществимости поставленной задачи. Справедливость модели подтверждена экспериментальными измерениями емкости C_{12} . Работа выполнена при финансовой поддержке ГПНИ «Датчик» (№ 201630064).

Список использованных источников

- 1. Xiaobei B. Li, Sam D. Larson, Alexei S. Zyuzin, and Alexander V. Mamishev "Design Principles for Multichannel Fringing Electric Field Sensors," IEEE SENSORS JOURNAL, VOL. 6. № 2, 2006. pp. 434 440.
- Kim C. et al. Numerical analysis on effective electric field penetration depth for interdigital impedance sensor //Journal of Physics: Conference Series. – IOP Publishing, 2013. – T. 418. – №. 1. – C. 012020.
- Нетушил, А. В. Расчет потенциальных полей / А. В. Нетушил // Труды МЭИ, 1951. Вып. 9. С. 3–25.