Для обеспечения работы двигателей, а также для их синхронизации используется микроконтроллер. Для подогрева клеевого состава применяется нагреватель в виде проволоки из нихрома, намотанной на изолирующий цилиндр (алебастр). Контроль за нагревом клеевого состава осуществляется с помощью терморезистора, который также подключен к микроконтроллеру. Данный способ подключения позволяет точно поддерживать температуру клеевого состава в заданных пределах.

Список использованных источников

1. Оборудование для ламинирования пленок [Электронный ресурс]. – Режим доступа: https://studme.org/125158/tehnika/oborudovanie_laminirovaniya_plenok#382. – Дата доступа: 27.09.2019.

УДК 677.024

ИССЛЕДОВАНИЕ ТКАНИ МЕДИЦИНСКОГО НАЗНАЧЕНИЯ НА ВОДОПРОНИЦАЕМОСТЬ

Пронько Е.В.¹, асп., Рубаник В.В.², д.т.н., чл.-кор. НАН Беларуси, Рубаник В.В. мл.², д.т.н., доц., Минченя В.Т.³, к.т.н., проф. Витебский государственный технологический университет, г. Витебск, Республика Беларусь ²Институт технической акустики НАН Беларуси, г. Витебск, Республика Беларусь ³Белорусский национальный технический университет, г. Минск, Республика Беларусь

<u>Ключевые слова:</u> неоинтима, артерия, протез сосуда, графт, водопроницаемость, двухслойное полотно.

Реферат. В статье приведены виды ткацких переплетений используемых для изготовления стентграфтови протезов кровеносных сосудов и результаты испытаний на водопроницаемость тканых заготовок.

Изделия медицинского назначения изготавливают из полиэфирных филаментных нитей и лавсана. Использование этих нитей является безопасным, так как материал биосовместим с тканями человека. Однако, ткань из этого материала имеет ряд серьезных недостатков, таких как образование слоя неоинтимы, что приводит к уменьшению и закупориванию просвета протеза. Изделия из таких материалов быстро пропитываются кровью, стенки полотна и их анастомозы с нативной артерией герметизируются за счет свертывания аутокрови, что приводит к повышенной интраоперационной кровопотере. Кроме того, формирование парапротезной гематомы в условиях постоянного присутствия в ране инородного материала повышает риск инфицирования имплантированного сосуда, а формирование тромбов в стенке протеза и микротромбов на внутренней поверхности способствует развитию воспаления, росту неоинтимы, блокирует миграцию клеток в стенку протеза, формирование соединительнотканной основы в стенке протеза и экстрапротезной соединительной капсулы [1]. Таким образом, для улучшения функциональных свойств тканых медицинских изделий необходимо использовать ткани с низкой водопроницаемостью, которая, естественно, определяется плотностью по основе и утку, а так же видом переплетения. Целью работы и явилась определение водопроницаемости разрабатываемых тканей медицинского назначения в зависимости от указанных параметров.

В производстве тканых заготовок для графтов и протезов кровеносных сосудов использовали переплетение «полотно» (рис. 1, a) и двухслойное (полотно+сатин) переплетение (рис. 1, δ). Испытания были проведены в Республиканском инновационном унитарном предприятии «Научно-технологический парк БНТУ «Политехник»».

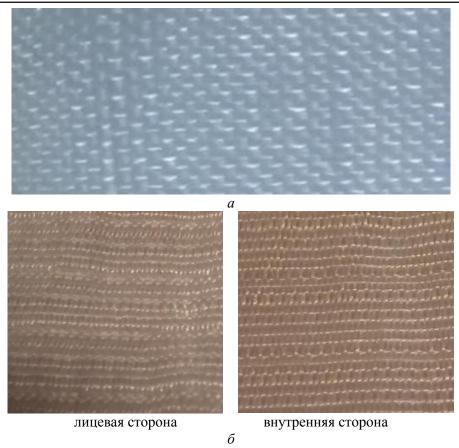


Рисунок 1 — Вид тканой заготовки с переплетением: a — «полотно», δ — двухслойное переплетение

Для изготовления протезов сосудов использовали нить PES74 dtexS 110, а для графтов нить PES 33dtexZ200. В зависимости от диаметра изделия изменяли количество нитей в основе и плотность по утку. Так при ткачестве изделий диаметром от 22 мм и выше использовали 900 или 420 нитей основы (в зависимости от линейной плотности нити), при ткачестве изделия с диаметром от 14 до 22 мм — 450 или 210 нитей, при ткачестве изделий диаметром меньше 16 мм — 300 или 140 нитей.

Для обеспечения одинаковой плотности при разном количестве нитей в основе увеличивали плотность по утку, т. е. ткани с одинаковым видом переплетения и одинаковой нитью задавали разную плотность как поверхностную, так и объемную. Соответственно эти изделия имели иразную водопроницаемость (пропускную способность). Для исследований было изготовлено 16 образцов, и, на основании полученных результатов по водопроницаемости, рекомендованы технологические режимы изготовления тканей для графтов и протезов сосудов.

Все образцы, кроме 3 и 4 подвергали термообработке (термофиксации) впечи Dispach при температуре 210 °C в течение 10 минут. Образец 3 не был термофиксирован, а образец 4 термофиксировали за счет утюжкипри температуре 110 °C (режим «лен»). На всех образцах в каждый зуб берда было заведено по 7 нитей, на образцах 15 и 16 – по 10 нитей. Для исследования были выбраны образцы с разными рисунками переплетения, разных диаметров и из разной нити. Поверхностная плотность ткани при двухслойном плетении составляла 800÷870 кг/м³, а при однослойном переплетении – 580–680 кг/м³. При переходе на нить большей линейной плотности поверхностная плотность ткани возрастала незначительно. О водопроницаемости тканых заготовок судили по количеству деионизованной воды, протекающей через вырезанную из тканой заготовки пластину диаметром 1 см [2] (табл.1).

Витебск 2019 77

		TF	и,	K	3,	Объем воды, мл			
№	Тип изделия	Лиейная плотность нить, tex	Диаметр заготовки, мм	Вид переплетения	Плотность по утку, п/см	за первую мину- ту	за вторую минуту	за третью минуту	после термофик- сацииия
1	Графт	3,3	28	полотно	115	579	579	579	579
2	Графт	3,3	14	двухслойное	122*2	1094	997	980	386
3	Графт	3,3	27,1	двухслойное	115*2	1416	1190	1100	386
4	Графт	3,3	27,1	двухслойное	115*2	618	772	729	386
5	Графт	3,3	27,1	двухслойное	115*2	1351	1158	1100	386
6	Графт	3,3	29,1	двухслойное	122*2	708	804	772	386
7	Графт	3,3	45,1	двухслойное	150*2	1802	1795	1792	386
8	Протез сосуда	7,4	16	двухслойное	140*2	579	579	622	579
9	Протез сосуда	7,4	26	двухслойное	120*2	515	515	515	441
10	Протез сосуда	7,4	33,5	двухслойное	140*2	579	515	515	386
11	Графт	7,4	28	полотно	70	1512	1500	1517	579
12	Графт	7,4	28	полотно	80	1190	1126	1135	676
13	Графт	7,4	28	полотно	85	1030	1030	1036	483
14	Протез сосуда	7,4	20	полотно	85	193	177	139	56
15	Протез сосуда	7,4	20	полотно	90	167	109	86	39

Таким образом, установлено, что изменение плотности по утку не приводит к существенному изменению водопроницаемости ткани. Изменение же плотности по основе (образцы 14 и 15) позволяет значительно снизить водопроницаемость. Термофиксация за счет утюжки при температуре 110 °C позволяет также существенно снизить водопроницаемость ткани. Необходимо отметить, что для всех тканых образцов из нити 3,3 tex с двухслойным переплетением значение водопроницаемости после термофиксации ткани практически одинаковы.

Список использованных источников

- 1. Патент RU 2 572 333 C1 «Способ изготовления протезов сосудов малого диаметра с низкой пористостью» Владелец патента: ФГБУ «НИИПК им. акад. Е.Н. Мешалкина» Минздрава России (RU), автор патента Степанова А. О. Начало действия: 2014.10.28. Публикация: 2016.01.10. Подача: 2014.10.28. [Электронный ресурс]. Режим доступа: https://yandex.ru/patents/doc/RU2572333C1_20160110. Дата доступа: 23.09.2019.
- 2. ГОСТ Р ИСО 7198-2013 «Имплантаты для сердечно-сосудистой системы. Трубчатые сосудистые протезы» [Электронный ресурс]. Режим доступа: http://docs.cntd.ru/document/1200107076. Дата доступа: 23.09.2019.

78 Витебск 2019