- 3. Симамура, С. Углеродные волокна; пер. с японского / С. Симамамура. Москва: Мир, 1987. 304 с.
- 4. Строкин, К. О. Прогнозирование прочностных свойств композиционных материалов, армированных углеродными тканями: дис. кандидата технических наук: 05.19.01. Санкт-Петербург, 2018. 182 с.
- 5. Макаров, А. Г. Разработка компьютерных технологий моделирования физикомеханических свойств текстильных материалов сложного строения: диссертация доктора технических наук: 05.13.01, 05.19.01. Санкт-Петербург, 2004. 498 с.
- 6. Макаров, А. Г. Методы математического моделирования механических свойств полимеров / А. Г. Макаров, А. В. Демидов. Изд-во СПГУТД, 2007. 392 с.

УДК 677.024

МЕБЕЛЬНЫЕ ТКАНИ С ИСПОЛЬЗОВАНИЕМ КОТОНИЗИРОВАННОГО ЛЬНЯНОГО ВОЛОКНА

Михайлова М.П., к.т.н., Власова Н.А., в.н.с., к.т.н.

Инновационный научно-производственный центр текстильной и легкой промышленности, г. Москва, Российская Федерация

Ключевые слова: мебельные ткани, ассортимент, структура.

Реферат. В сообщении показана заинтересованность рынка текстильных товаров в мебельных тканях новых структур, современного дизайна, модных отделок и колористики. Приведены результаты разработок мебельных тканей с использованием котонизированных льняных волокон в сочетании с хлопком и химическими волокнами, которые обеспечивают комплекс потребительских свойств. Разработка структур тканей с использованием нетрадиционных для этого вида переплетений и их сочетаний позволила создать палитру современного дизайна поверхности мебельных тканей.

В настоящее время наблюдается значительный рост производства мебели, который сопровождается внедрением новых материалов и новыми технологиями их переработки. Выпуск различных стилей и вариантов мебели требует обновления тканей в этом секторе каждые 4–5 лет. Емкость мирового рынка вырастает со среднегодовыми темпами роста в 13 % и составила в 2012 г. 117 млн долларов США.

Знание потребительских свойств и свойств сырья, из которого состоит ткань, способствует ее продвижению на рынке.

К основным характеристикам качества мебельных тканей относятся: дизайн, комфортность и долговечность.

В данном сообщении приводятся результаты исследовательской работы ОАО «ИНПЦ ТЛП» по созданию дизайна и технологии производства мебельных тканей с использованием котонизированного льняного волокна.

Особое значение для отечественной текстильной промышленности имеет перспективное направление в использовании короткого льняного волокна и отходов трепания для производства хлопкообразного волокна — котонина для получения смесовых пряж и тканей. Производство пряжи из котонизированного льноволокна в смеси с хлопком дает возможность сократить потребность в хлопке на 30–50 %.

Стабильный спрос на льняное волокно и продукцию из него на мировом рынке делает эффективными инвестиционные вложения в эту отрасль.

Перспективность выработки ткани из такой пряжи обусловлена возможностью разработки различного ассортимента тканей и их назначения: от тонких сорочечных до мебельнодекоративных – варьируя пропорции сырьевого состава смеси и линейную плотность пряжи от 20–25 до 80–200 текс.

Были разработаны и выработаны мебельные ткани из смесовой пряжи пневмомеханического способа прядения с использованием льняного котонизированного волокна.

В качестве основы использовалась крученая пряжа линейной плотности 163 текс (40 текс х 2 + 83 текс) следующего сырьевого состава:

- льняное волокно -38,7 %;
- хлопковое волокно 20,8 %;
- вискозное волокно 15,3 %;
- полиэфирное волокно -25,2 %.

В утке использовалась крученая пряжа линейной плотности 200 текс (100 текс x 2) следующего сырьевого состава:

- льняное волокно 35 %;
- хлопковое волокно 65 %.

Образцы мебельных тканей были выработаны на ткацком станке СТБ с 8-ми оборотным кулачковым зевообразовательным механизмом.

Заправочный расчет выполнен с учетом поверхностной плотности для ассортимента мебельных тканей, равной $400–500~\text{г/m}^2$.

Было выработано пять образцов ткани следующих мелкоузорчатых переплетений:

- креповое;
- обратно-сдвинутая саржа;
- клетки:
- продольные полосы;
- квадраты.

В таблице 1 приведены расчетные коэффициенты наполнения ткани волокнистым материалом, которые показывают, что разработанные ткани могут вырабатываться на станках СТБ, СТБУ, СТБТ с различной шириной заправки по берду, т. к. предельный коэффициент наполнения ткани у названных станков не ниже 0.85.

Таблица 1 – Значения коэффициентов наполнения тканей

No	Переплетение ткани	Значения коэффициента наполнения мебельных тканей	
1	Креповое-1	0,976	
2	Обратно-сдвинутая саржа по основе	0,865	
3	Креповое-2	0,993	
4	Продольные полосы-1	0,976	
5	Продольные полосы-2	0,914	

Были выработаны опытные мебельные ткани со следующим показателями (табл. 2).

Таблица 2 – Показатели свойств суровых мебельных тканей

Наименование показателей	Значения показателей				
Линейная плотность основной пряжи, текс	163,3	161,1	159,3	160,1	
Линейная плотность уточной пряжи, текс	181,3	179,3	178,3	175,2	
Ширина суровой ткани, см	147,7	150,1	148,4	148,3	
Плотность ткани, н/10 см					
- по основе	130	128	128	128	
- по утку	100	100	100	100	
Разрывная нагрузка, Н					
- вдоль основы	943,9	919,7	960,1	935	
- вдоль утка	746,7	852,8	833,5	776,4	
Разрывное удлинение,%					
- по основе	19,2	22	19,9	17,9	
- по утку	14,9	12,78	14,3	13,9	
Уработка, %					
- по основе	12	11,6	11	4,4	
- по утку	6	4	7		
Поверхностная плотность, г/м ²	431,7	426,1	428,6	424,9	
Воздухопроницаемость, дм ³ /м ² с	325	282	381	340	
Устойчивость при истирании по плоскости,	5661	5663	7273	5935	
циклы	3001	3003	1213	3733	
Прочность при раздире, Н	201	161,9	197,2	195,2	
прочность при раздире, п	152	136,4	184,4	157	

На рисунке 1 показан внешний вид суровых тканей различной структуры.

Витебск 2019 73

В настоящее время в России разработанные ткани реализуются в торговле в суровом и крашеном виде.

Рисунок 1 – Внешний вид суровых тканей различной структуры

УДК 677.057

УСТРОЙСТВО ДЛЯ ЛАМИНАЦИИ ОТХОДОВ ЛЕГКОЙ ТЕКСТИЛЬНОЙ ПРОМЫШЛЕНОСТИ

Ольшанский В.И., к.т.н., проф., Мульц В.Г., асп.

Витебский государственный технологический университет, г. Витебск, Республика Беларусь

Ключевые слова. Устройство для ламинации, технология ламинации.

Реферат. В данной статье рассмотрен механизм и принцип работы установки для ламинирования отходов легкой текстильной промышленности фольгой и бумагой с помощью различных клеевых составов.

В настоящее время для ламинации переработанных отходов легкой текстильной промышленности, в том числе с помощью фольги и бумаги, используется технология ламинирования без использования растворителей. Эта технология исключает необходимость использования туннельной сушки, что существенно сокращает затраты на электроэнергию. Клей при этой технологии наноситься в вязкотекучем, подогретом состоянии.

С целью автоматизации производства ламинированных материалов, а также исследования их потребительских свойств, была разработана автоматическая установка для ламинирования текстильных материалов. Структурная кинематическая схема устройства представлена на рисунке 1.