способствует внедрению частиц между волокнами, что увеличивает срок службы инструмента, но за счет острых кромок абразивного порошка происходит разрыв некоторых отдельных нитей.

Относительное удлинение, %

Рисунок 4 – Диаграмма растяжения абразивного инструмента: 1 – исходный; 2 – обработанный абразивным составом без применения УЗК; 3 – обработанный абразивным составом с применением УЗК

Рисунок 5 – Микроструктура абразивного шнура: а – обработанный абразивным составом без применения УЗК; б – обработанный абразивным составом с применением УЗК

Применение данных типов шлифовальных инструментов на эластичной основе обеспечивает чистоту поверхности обрабатываемой детали на уровне 0,32–0,160 Ra, 9–10 класс чистоты поверхности.

Список использованных источников

- 1. Балдев Р., Ранджердран, В., Паланичами, П. Применение ультразвука. М.: Техносфера, 2006.
- 2. Кардашев, Г. А. Физические методы интенсификации процессов химической технологии / Г. А. Кардашев. М.: Химия, 1990.

УДК 621.793.184+539.216.2

ЗАДАНИЕ ФОРМЫ ИЗДЕЛИЯМ С ЭПФ ПРИ ИОННО-ПЛАЗМЕННОМ НАНЕСЕНИИ ПОКРЫТИЯ

Урбан В.И., асп., Рубаник В.В., д.т.н., Рубаник В.В. (мл.), д.т.н., Багрец Д.А., н.с.

Институт технической акустики НАН Беларуси, г. Витебск, Республика Беларусь

<u>Реферат</u>. В статье рассмотрено задание формы проволочного образца из никелида титана (TiNi) методом вакуумно-дугового осаждения нитрида циркония (ZrN). Проанализированы результаты расчетов параметров задания формы и кинетика термоупругих мартенситных превращений. Определены характеристические температуры фазовых переходов. Описан технический режим осаждения. Для анализа использовались «методика определения параметров формовосстановления при наведении изгибных деформаций» и дифференциально-сканирующая калориметрия.

<u>Ключевые слова</u>: нитрид циркония, ионно-плазменное осаждение, тонкие пленки, никелид титана, дифференциально-сканирующая калориметрия, деформации, эффект памяти формы.

Объект исследования – проволока из никелида титана (состава Ti-50,8 ат.% Ni) диаметром 0,5 мм.

Цель – исследовать параметры задания формы, кинетику термоупругих мартенситных превращений и характеристические температуры после осаждения на образец покрытия ZrN ионно-плазменным методом.

Сплавы с эффектом памяти формы (ЭПФ) часто относят к так называемым материалам, позволяющим создавать принципиально интеллектуальным новые конструкции и технологии в разных отраслях машиностроения: авиакосмической и ракетной техники, приборостроения, энергетики, медицины и др. Наибольший практический интерес представляют сплавы на основе никелида титана Ti-Ni, поскольку наряду с рекордными они обладают характеристиками ЭΠΦ высокой коррозионной стойкостью и биосовместимостью [1].

Метод вакуумно-дугового осаждения за счет ионной бомбардировки обеспечивает нагрев обрабатываемой поверхности, что легло в основу разработанного в «ИТА НАН Беларуси» совместно с ЗАО «Медицинское предприятие Симург» (г. Витебск, Беларусь) способа задания формы изделиям из TiNi сплава с одновременным нанесением биоинертного покрытия нитрида титана [2]. В стоматологии наряду с покрытиями нитрида титана используют покрытия на основе циркония. Свойства покрытий из нитрида циркония аналогичны нитриду титана, но отличаются от последнего более высокой стойкостью к воздействию биологических сред, лучшей биосовместимостью и отсутствием аллергических реакций. Поэтому использование покрытий из нитрида циркония на изделиях из никелида титана перспективно.

В данной работе проволочный образец из никелида титана (Ti-50,8 ат.% Ni) диаметром 0,5 мм в форме дуги закреплялся на оснастке, затем помещался в вакуумную камеру установки УВНИПА-1-001. Покрытие ZrN осаждалось прямым потоком.

Технический режим осаждения состоял из следующих этапов:

1) ионно-лучевая очистка при потенциале смещения – 4 кВ в течение 16 минут;

2) ионная бомбардировка при потенциале смещения – 1 кВ в течение 7 минут;

3) осаждение подслоя циркония при потенциале смещения – 60 В и токе дуги 90 А в течение 2 минут;

4) осаждение ZrN при потенциале смещения – 60 В, токе дуги 90 А и давлении 1.5 *10⁻² Па в течениие13 минут.

Температура во время процесса осаждения варьировалась от 400 до 500 °C. Толщина покрытия составила 1 мкм.

В качестве методики определения заданных деформаций использовалась «методика определения параметров формовосстановления при наведении изгибных деформаций» [3]. Полную наводимую деформацию εt определяли по формуле:

$$\varepsilon_t = \frac{d}{D} \times 100 \%$$

где d – диаметр проволоки, D – диаметр цилиндра, вокруг которого огибалась проволока. Остаточную деформацию после снятия нагрузки ε_i определяли по формуле:

$$\varepsilon_i = \frac{d}{D_1} \times 100\%$$

где *D*₁ – диаметр полуокружности дуги после снятия нагрузки.

После снятия образца с оправки определяли значения наведенной деформации εі и рассчитывали упругую деформацию [3]:

$$\varepsilon_y = \varepsilon_t - \varepsilon_i$$

где ε_t – полная наводимая деформация, ε_y – упругая деформация, восстанавливаемая после снятия нагрузки (%), ε_i – остаточная деформация после снятия нагрузки (%). Полученные результаты представлены в таблице.

Таблица 1 – Результаты расчетов деформаций образца проволоки TiNi после осаждения покрытия ZrN

$\varepsilon_t = 1.25 \%$	ε _i = 1.24 %	$\epsilon_y = 0.01 \%$

Полная наводимая деформация ε_t взята из усредненной величины типичной наводимой деформации для ортодонтической сверхэластичной дуги из сплава никелида титана (Ti-50,8 ат.% Ni). Исходя из того, что в результате расчетов упругая деформация $\varepsilon_y = 0.01$ %, можно сделать вывод, что в процессе осаждения покрытия ZrN наводимая нами деформация задалась.

Рисунок 1 – Кривые ДСК образца проволоки TiNi после осаждения покрытия ZrN

Исследования характеристических температур и кинетики фазовых переходов проводили на дифференциальном сканирующем калориметре DSC822e (Mettler Toledo, Швейцария); в интервале температур от -50 °C до 50 °C, скорость охлаждения и нагрева образцов составляла 10 °C/мин.

Проанализировав результаты дифференциально-сканирующей калориметрии, можно сказать, что мартенситные превращения реализуются по схеме B2 \leftrightarrow R \leftrightarrow B19'. При нагреве обратное мартенситное превращение происходит в две стадии по схеме: B19' \rightarrow R \rightarrow B2 с характеристическими температурами A_H' = 2 °C; A_K' = 15 °C; A_H = 17°C; A_K = 28 °C. При охлаждении образца в данном диапазоне температур от -50°C до 50°C наблюдается только один завершенный переход прямого мартенситного превращения B2 \rightarrow R с характеристическими температурами M_H' = 25 °C; M_K' = 11 °C. Прямой мартенситный фазовый переход R \rightarrow B19' размыт, что затрудняет определение его характеристических температур.

Таким образом можно сделать следующие выводы:

– в результате расчётов была получена упругая деформация ε_y, равная 0.01 %, следовательно, в процессе осаждения покрытия ZrN наводимая нами деформация задалась;

– обратное мартенситное превращение происходит в две стадии по схеме: B19´→R→B2 с характеристическими температурами A_H' = 2 °C; A_к' = 15 °C; A_H = 17 °C; A_K = 28 °C;

– в данном диапазоне температур от -50°C до 50°C наблюдается только один завершенный переход прямого мартенситного превращения B2→R с характеристическими температурами $M_{\text{H}'}$ = 25 °C; $M_{\text{K}'}$ = 11 °C.

Список использованных источников

- 1. Хмелевская, И. Ю. Сплавы с эффектом памяти формы и их применение в медицине и технике // Современные проблемы металловедения. М. 2009. С. 8–12.
- Способ изготовления биоинертного изделия из материала с эффектом памяти формы на основе никелида титана: пат. 19507 Респ. Беларусь, МПК A 61F 2/86, A 61F 2/94 / В.

В. Рубаник, В. В. Рубаник мл., Д. А. Багрец, В. Г. Дородейко; заявители: ГНУ «ИТА НАН Беларуси», ЗАО «Медицинское предпр. Симург». – № а 20130042; опубл. 30.10.15 // Афіцыйны бюл. / Нац. цэнтр інтэлектуал. уласнасці. – 2015. – № 5. – С. 43.

3. Shape memory alloys : fundamentals, modeling and applications / V. Brailovski, S. Prokoshkin, P. Terriault and F. Trochu. – Montreal: ETS Publ., 2003. – 844 p.

УДК 621.9.048.6+669-154:534.8

КРИСТАЛЛИЗАЦИЯ ЧУГУНА ПОД ВОЗДЕЙСТВИЕМ УЛЬТРАЗВУКА

Савицкий В.О., м.н.с., Луцко В.Ф., с.н.с., Рубаник В.В., д.т.н.

Институт технической акустики НАН Беларуси, г. Витебск, Республика Беларусь

<u>Реферат</u>. В статье рассмотрено влияние ультразвуковой обработки расплавленного чугуна на его структуру.

Ключевые слова: чугун, ультразвуковая обработка, расплав, графит.

Ультразвуковая обработка металлов и сплавов является одним из наиболее эффективных способов улучшения их физико-механических и эксплуатационных свойств [1– 3]. Вводимые в расплав ультразвуковые колебания интенсифицируют процесс дегазации, способствуют дополнительному перемешиванию расплава, препятствуют возникновению дендритной ликвации и концентрации неметаллических включений на границах зерен, что положительно влияет на формирование однородной структуры металла в процессе кристаллизации. Наряду с этим, мощный ультразвук позволяет в процессе модифицирования вводить в металл различные композитные элементы и тугоплавкие лигатуры, воздействуя непосредственно на кристаллическую решетку [4–6].

Ультразвук повышает механические свойства затвердевших расплавов и намного улучшает способность металла к пластической деформации. Воздействуя на фронт кристаллизации силуминов, ультразвуковая волна разрушает дендриты, способствует их измельчению. Обработка расплава ультразвуком приводит к формированию газовых зародышей, их коагуляции, что ускоряет процесс дегазации. В результате обработка расплавов силуминов при кристаллизации позволяет измельчить эвтектику, снизить газовую пористость слитков и повысить предел их прочности на разрыв на 20...40 % [7]. Чугун, например, становится прочнее, сопротивление разрыву возрастает более чем в три раза. К тому же после такой операции металл почти не поддается коррозии. Важно, что обработанный таким образом чугун приобретает свойства стали, а по некоторым данным даже превосходит ее [8].

Для исследования влияния воздействия ультразвуковых колебаний на структуру и свойства кристаллизующегося металла в ИТА НАН Беларуси была создана эксперементальная установка, основные узлы которой: ультразвуковой генератор и акустическая система, пневматический пресс, литьевая оснастка и компрессор (рис. 1).

б

Рисунок 1 – Схема ввода ультразвуковых колебаний в кристаллизующий расплав (а) и вид эксперементальной устанвоки (б): 1 – расплав, 2 – кокиль, 3 – стакан, 4 – основание, 5 – пневмоцилиндр, 6 – стойка, 7 – механизм перемещения,8 – пьезоэлектрический преобразователь, 9 – бустер, 10 – излучатель