СИНТЕЗ И УТОЧНЕНИЕ СТРУКТУРЫ МОДИФИКАЦИЙ ВЫСОКОГО ДАВЛЕНИЯ VO₂(S) И VO₂(M2)

Зибров И.П., Филоненко В.П.

Институт физики высоких давлений им. Л. Ф. Верещагина РАН, Москва, Россия <u>zibrov@hppi.troitsk.ru</u>

Введение

Диоксид ванадия имеет две модификации, стабильные при обычном давлении - $VO_2(R)$ (T>70 C) [1] и $VO_2(M1)$ (T<70 C) [2], еще две модификации были синтезированы в гидротермальных условиях - $VO_2(A)$ [3] и $VO_2(B)$ [4]. В условиях высоких давлений были получены модификации $VO_2(M2)$ и $VO_2(M3)$ [5]. Следует отметить, что модификации R, M1, M2 и M3 относятся к структурному типу рутила (TiO₂), причем R имеет неискаженную, тетрагональную ячейку рутила, а M1, M2 и M3 имеют различные моноклинные искажения. Ранее [6], используя смесь V_2O_5 с NaN₃, мы синтезировали при P=5 ГПа и T=800 C соединение $V_{3.047}O_7$ со структурой симпсонита Al₄Ta₃O₁₃(OH), в котором одна из позиций ванадия занята частично. При полностью занятой позиции стехиометрия соединения соответствует формуле VO_2 . Таким образом, осуществляя синтез в контролируемых по составу условиях можно ожидать получения новой модификации VO_2 со структурой симпсонита. Целью данной работы был синтез VO_2 со структурой симпсонита из стехиометрической смеси V_2O_3 с V_2O_5 и определение его структурных параметров.

Методика и результаты

Методика термобарической обработки материала в камерах «тороид» подробно описана в [7,8]. Исходную смесь порошков V₂O₃+V₂O₅ предварительно прессовали в таблетки диаметром 5 мм и высотой 2÷3 мм. Для предотвращения химического взаимодействия образцы изолировали от графитового нагревателя тугоплавкой фольгой (Ta, W). После достижения давления в камере 5.0-7.0 ГПа, нагревали образец до T=600-800 С и выдерживали в течение 20-300 сек., после чего

материал охлаждали со скоростью 100 С/сек.. Извлеченные из камеры высокого давления образцы очищали механически от защитной фольги и подвергали рентгенофазовому анализу в Гинье-камере G670 (Huber, Германия) (Си К_{α1} излучение).

Анализ дифрактограмм более, чем 50 образцов, приготовленных при различных Р-Т условиях, показал, что они двухфазные и состоят из VO₂ со структурой симпсонита, названной нами VO₂(S), и VO₂(M2). Для структурного анализа был выбран образец с хорошо закристаллизованными фазами, который был синтезирован при Р=5 ГПа, T=650 С и t=140 сек.. Структуру модификаций высокого давления уточняли с использованием полнопрофильного анализа (пакет программ GSAS [9,10]). Результаты уточнения структуры VO₂(S), а также VO₂(M2) представлены на Рис.1а и в Таблице 1. Атомные координаты и изотропные тепловые параметры для VO₂(S) представлены в Таблице 2, а для VO₂(M2) в Таблице 3. На Рис.16 показана структура S-модификации. Координационным полиэдром ванадия является октаэдр [VO6]. Структура является двухслойной: один слой построен из островков, состоящих из 3-х октаэдров, соединенных ребрами, а во втором слое такие же островки связаны октаэдрами [VO6], поэтому слой является сплошным. Следует отметить, что структура модификации высокого давления WO₂-hp (структурный тип рамсделлита MnO₂) [11] построена из таких же строительных блоков, что и структура VO₂(S) – трех октаэдров, соединенных ребрами. Разница состоит только в способе укладки этих строительных единиц в слое. При этом обе структуры являются двухслойными с близкими параметрами с.

Интересно отметить, что V_{3.047}O₇ и VO₂(S) - это всего второе и третье соединения, которые кристаллизуются в структурном типе симпсонита, помимо самого симпсонита.

Рисунок 1- Полнопрофильный анализ VO₂(S), VO₂(M2) и структура VO₂(S). а - экспериментальные (+), рассчитанные (сплошная линия) и разница между экспериментальными и рассчитанными данными (нижняя кривая) рентгеновской дифракции. Позиции всех разрешенных брэгговских рефлексов показаны в виде рядов вертикальных маркеров: верхний ряд - VO₂(M2), нижний ряд - VO₂(S); б - структура VO₂(S), состоящая из октаэдров [VO6] (светлые и темные октаэдры располагаются в разных плоскостях вдоль оси *с*): 1, 2 – в направлении [001]; 3 - в направлении [110]. Большие сферы - атомы V. Маленькие сферы в вершинах октаэдров – атомы О

	S	M2			
Химическая формула	VO ₂	VO ₂			
Молекулярный вес	82.94	82.94			
Пространственная группа	P 3	C 2/m			
a (Å)	7.37329(8)	9.0927(8)			
b (Å)		5.7819(1)			
c (Å)	4.52703(8)	4.5415(3)			
β (°)		90.925(2)			
$V(\dot{A}^3)$	213.141(3)	238.730(7)			
Z	7	8			
<i>d</i> -выч. (г/см ³)	4.523	4.615			
Весовая доля в смеси, %	32.81(8)	67.19(5)			
Излучение	Cu Kα ₁				
Длина волны (Å)	1.540598				
Температура (К)	293				
Сбор данных					
Дифрактометр	камера Гинье G670, Huber				
Уточнение		GSAS			
R _F	0.1107	0.0743			
R _P		0.0247			
R _{WP}		0.0354			
No. уточняемых параметров	63	54			

Таблица 1 - Эксперименталы	ые данные для	VO ₂ (S) и VO ₂ ((M2).
----------------------------	---------------	--------------------	-----------------------	-------

Таблица 2 - Атомные координаты, изотропные тепловые параметры $U_{iso}\,(\text{\AA}^2)$ и занятости позиций для $VO_2(S)$

Атом	Site	OCC	x	У	Z	U _{iso}
V1	(3d)	1.0	0.1035(13)	0.4001(14)	-0.076(11)	0.0096(6)
V2	(3d)	1.0	0.3983(19)	0.2894(19)	0.423(12)	0.0603(17)
V3	(1a)	1.0	0	0	0.027(12)	0.025
01	(3d)	1.0	0.206(6)	0.020(6)	0.682(6)	0.025
02	(3d)	1.0	0.369(6)	0.477(6)	0.554(6)	0.025
O3	(3d)	1.0	0.181(8)	0.246(7)	0.123(9)	0.025
04	(3d)	1.0	0.433(5)	0.064(6)	0.249(13)	0.025
O5	(1b)	1.0	0.3333	0.6667	0.119(11)	0.025
O6	(1c)	1.0	0.6667	0.3333	0.586(23)	0.025

Таблица 3 - Атомные координаты, изотропные тепловые параметры $U_{iso}\,(\text{\AA}^2)$ и занятости позиций для $VO_2(M2)$

Атом	Site	OCC	X	У	Z	U _{iso}
V1	(4g)	1.0	0	0.7267(7)	0	0.0274(8)
V2	(4i)	1.0	0.2247(4)	0	0.5141(7)	0.0124(8)
01	(8j)	1.0	0.1382(16)	0.2564(17)	0.3010(30)	0.025
02	(4i)	1.0	0.3831(12)	0	0.1812(22)	0.028(4)
O3	(4i)	1.0	0.1049(12)	0	0.8000(26)	0.009(3)

Из таблицы 1 следует, что структурные R_F в несколько раз превышают профильные R_P и R_{WP} . Вероятнее всего, это связано с очень высоким уровнем фона (малым отношением «сигнал/шум»), который определяется сильной флюоресценцией атомов ванадия под действием медного излучения.

Литература

1. V.M. Goldschmidt, T. Barth, D. Holmsen, G. Lunde, W.H. Zachariasen, *Skrifter utgitt av det Norske Videnskaps-Akademi i Oslo 1: Matematisk-Naturvidenskapelig Klasse*, **9**, 1, 1926.

2. G. Andersson Acta Chemica Scandinavica, 10, 623-628, 1956.

3. Y. Oka, S. Sato, T. Yao, N. Yamamoto J. of Solid State Chem., 141, 594-598, 1998.

4. Y. Oka, T. Yao, N. Yamamoto J. of Solid State Chem., 105, 271-278, 1993.

5. B.L. Chamberland *J. of Solid State Chem.* **7**, 377-384, 1973.

6. И. П. Зибров, В. П. Филоненко, В. А. Сидоров, С. Г. Ляпин Неорганические материалы, **52**, 9, 968-974, 2016.

7. Zibrov I.P., Filonenko V.P., Werner P.-E., Marinder B.-O., Sundberg M. J. of Solid State Chem. 141, 205-211, 1998.

8. Filonenko V.P., Zibrov I.P. Inorganic Materials, 37, 9, 953-959, 2001.

9. Larson, A.C. and Von Dreele, R.B., Los Alamos National Laboratory., Report LA-UR-86-748, 1987.

10. B.H. Toby, J. Appl. Cryst. 34, 210-213, 2001.

11. Sundberg M., Werner P.-E., Zibrov I.P Zeit. fur Krist. 209, 662-666, 1994.