В- И D- МОДИФИКАЦИИ Yb₂O₃: ПОЛУЧЕНИЕ И СТРУКТУРА

Зибров И.П., Филоненко В.П.

Институт физики высоких давлений им. Л. Ф. Верещагина РАН, Москва, Россия zibrov@hppi.troitsk.ru

Введение

Первое систематическое изучение полиморфизма оксидов редкоземельных элементов было проведено Goldschmidt V. М. с соавторами [1]. В зависимости от размера редкой земли оксиды кристаллизуются в трех структурных типах, обозначенных Goldschmidt V. М. как А, В и С. При обычном давлении и температуре в гексагональной А-ячейке кристаллизуются оксиды La-Pm (П.Г. Р -3m, Z=1), в моноклинной В-ячейке - Sm-Gd(Tb) (П.Г. С 2/m, Z=6) и в кубической С-ячейке – (Tb)Dy-Lu (П.Г. I а3, Z=16). Наибольшей плотностью обладает моноклинная модификация. К настоящему времени опубликовано несколько десятков работ, посвященных изучению переходов между перечисленными модификациями в зависимости от температуры, а также определению термодинамических параметров этих фаз. Исследование поведения оксидов под давлением изучалось всего в нескольких работах, а под давлением и при температуре- всего в одной [2]. В этой систематической работе Hoekstra H. R. показал, что давление и температура стабилизируют В-модификацию, причем уже при P>4.0 ГПа оксиды от Dy до Lu кристаллизуются в плотной моноклинной ячейке. Ранее [3] мы обнаружили, что при термобарической обработке C-Lu₂O₃ и C-Yb₂O₃ при P=5 ГПа и T=1000 С образуется не только В-модификация этих оксидов, но и неизвестная ранее тетрагональная модификация. Целью данной работы была расшифровка структуры этой модификации на примере Yb₂O₃, т.к. при обработке именно этого оксида удалось получить максимальное количество новой фазы.

Методика и результаты

Методика термобарической обработки материала в камерах «тороид» подробно описана в [4,5] (Рис.1а). Исходный порошок C-Yb₂O₃ (Рис.1б) предварительно прессовали в таблетки диаметром 5 мм и высотой 3÷4 мм. Для предотвращения химического взаимодействия образцы изолировали от графитового нагревателя тугоплавкой фольгой (Та, W). После достижения давления в камере 5.0 ГПа, нагревали образец до T=1000 C и выдерживали в течение 3-5 мин., после чего образец охлаждали со скоростью 100 С/сек.. Извлеченные из камеры высокого давления образцы очищали механически от защитной фольги и подвергали рентгенофазовому анализу в Гинье-камере G670 (Huber, Германия) (Си К_{с1} излучение).

Рисунок 1 - а - схема ячейки высокого давления: 1- контейнер из литографского камня, 2 – крышки из смеси hBN и порошка графита, 3 – крышки из hBN, 4 – графитовый нагреватель, 5 – порошок hBN, 6 - образец, 7 – термопара; б – дифрактограмма исходного порошка C-Yb₂O₃.

Анализ дифрактограмм показал, что образцы двухфазные и состоят из В-фазы и новой тетрагональной модификации, названной нами D-Yb₂O₃ (рис.2). Для структурного анализа был выбран образец с максимальным содержанием D-фазы. При расшифровке структуры использовали метод проб и ошибок, т.к. присутствие В-модификации не позволяло использовать прямые методы. Различные модели проверяли с использованием полнопрофильного анализа (пакет программ GSAS [6,7]). Результаты уточнения корректной модели структуры D-Yb₂O₃, а также B-Yb₂O₃ представлены на Рис.2а и в Таблице 1. Атомные координаты и изотропные тепловые параметры для D-Yb₂O₃ представлены в Таблице 2.

Рисунок 2 - Полнопрофильный анализ D-Yb₂O₃, B-Yb₂O₃ и структура D-Yb₂O₃. а - экспериментальные (+), рассчитанные (сплошная линия) и разница между экспериментальными и рассчитанными данными (нижняя кривая) рентгеновской дифракции. Позиции всех разрешенных брэгговских рефлексов показаны в виде рядов вертикальных маркеров: верхний ряд - B-Yb₂O₃, нижний ряд - D-Yb₂O₃; б - структура D-Yb₂O₃, состоящая из пирамид [YbO5], соединенных ребрами попарно. Сферы в вершинах пирамид – атомы кислорода.

На рис.2б показана структура D-модификации. Координационным полиэдром иттербия является четырехугольная пирамида из атомов кислорода (к.ч. 5). Пирамиды связаны попарно общими ребрами основания. Эти пары связаны между собой вершинами. Пятерная координация в оксидах редких земель встречается впервыеобычными координационными числами являются 6, 7, 8. Это довольно необычный результат, но, плотность D-Yb₂O₃ (Таблица 1) ниже, чем плотность исходной C-фазы (9.21 г/см³) и, тем более В-модификации (Таблица 1), что не позволяет называть ее фазой высокого давления. Наиболее вероятно, она является низкотемпературной модификацией оксида иттербия.

Химическая формула	D-Yb2O3	B-Yb2O3		
Молекулярный вес	394.08	394.08		
Пространственная группа	P -4 21 m	C 2/m		
a (Å)	5.49191(5)	13.7451(2)		
b (Å)	5.49191(5)	3.43022(5)		
c (Å)	5.34875(6)	8.4803(1)		
β (°)		100.219(1)		
V (Å3)	161.324(2)	393.492(7)		
Z	2	6		
d-выч. (г/см3)	8.162	10.058		
Весовая доля в образце, %	38.21(6)	61.79(6)		
Излучение	Cu Κα1			
Длина волны (Å)	1.5405981			
Дифрактометр	Imaging Plate Guinier Camera G670, Huber			
Уточнение	GSAS			
RF	0.0756	0.0534		
RP	0.0677			
RWP	0.0956			
Число уточняемых параметров	39	60		

Таблица 1 - Экспериментальные	данные для D-Y	b ₂ O ₃ и B-Yb ₂ O ₃ .
-------------------------------	----------------	--

Таблица 2 - Атомные координаты, изотропные тепловые параметры U_{iso} (Å²) и занятости позиций для D-Yb₂O₃.

Атом	Site	000	x	У	Z	U _{iso}
Yb	(4e)	1.0	0.2178(1)	0.7178(1)	0.7003(2)	0.0127(3)
01	(4e)	1.0	0.298(1)	0.798(1)	0.072(1)	0.056(3)
02	(2b)	1.0	0	0	0.5	0.056(3)

Литература

1. Goldschmidt V. M., Ulrich F., Barth T. Norske. Videnskaps.-Akad. Skrifter, Oslo, I. Mat.-Naturv. KI., No. 5, 5-24, 1925.

2. Hoekstra H. R. J. of Inorg. Chem. 5, 754-757, 1966.

3. Zibrov I.P., Filonenko V.P., Antanovich A.A. Journal of International Scientific Publications: Materials, Methods & Technologies, **7**, 267-274, 2013.

4. Zibrov I.P., Filonenko V.P., Werner P.-E., Marinder B.-O., Sundberg M. J. of Solid State Chem. 141, 205-211, 1998.

5. Filonenko V.P., Zibrov I.P. Inorganic Materials, 37, 9, 953-959, 2001.

6. Larson, A.C. and Von Dreele, R.B., Los Alamos National Laboratory., Report LA-UR-86-748, 1987.

7. B.H. Toby, J. Appl. Cryst. 34, 210-213, 2001.