ВЛИЯНИЕ Mg НА МИКРОСТРУКТУРУ И ПРОЧНОСТНЫЕ СВОЙСТВА УЛЬТРАМЕЛКОЗЕРНИСТОГО СПЛАВА AI-Mg-Zr

Латынина Т.А.¹, Мурашкин М.Ю.^{2,3}, Валиев Р.З.^{2,3}, Орлова Т.С.^{1,4}

¹Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики, Санкт-Петербург, Россия ²Уфимский государственный авиационный технический университет Институт физики перспективных материалов, Уфа, Россия ³Санкт-Петербургский государственный университет, Санкт-Петербург, Россия ⁴Физико-технический институт им. А. Ф. Иоффе РАН, Санкт-Петербург, Россия t.latynina13@yandex.ru

Проводники на основе алюминиевых сплавов находят широкое применение в различных сферах промышленности благодаря их высокой электропроводности, коррозийной стойкости и легкости. Однако для электротехнических сплавов, используемых для линий электропередач, особенно важно сочетание высоких значений электропроводности и прочности при эксплуатации до температур 150– 200 °С. В последнее время перспективными материалами для удовлетворения функциональных требованиям термостабильности этих свойств считаются алюминиевые сплавы, легированные 0.1-0.4 мас.% Zr [1]. Однако сплавы системы Al-Zr имеют невысокую прочность [1]. Методы интенсивной пластической деформации (ИПД) позволяют улучшить механические свойства AI-Zr сплавов [2], однако уровень прочности остается еще недостаточно высоким. Поэтому Мд был выбран в качестве второго легирующего элемента, так как известно, что его присутствие в сплавах АІ значительно уменьшает средний размер зерна во время ИПД [3] и, соответственно, заметно повышает прочность материала.

Целью настоящей работы является детальное исследование влияния Mg на микроструктуру и функциональные свойства сплава AI-Mg-Zr, предварительно подвергнутого длительному высокотемпературному старению и последующей обработке интенсивной пластической деформации кручением (ИПДК).

Исходный сплав Al-Mg-Zr (0.53Mg, 0.27Zr, примесей (Fe+Ti+V+Cr+Mn) ≤0.10 мас.%, ост. Al), полученный методом совмещенного литья и прокатки, был состарен при температуре 375 °C в течение 366 ч (далее образцы Al-Mg-Zr_TO), структурирован ИПДК под давлением 2 ГПа на 10 оборотов при комнатной температуре (далее образцы Al-Mg-Zr_TO_ИПДК).

Микроструктура образцов изучалась с помощью рентгеноструктурного анализа (PCA), дифракции обратнорассеянных электронов (ДОРЭ), просвечивающей электронной микроскопии (ПЭМ). Для исследования механических свойств проводились испытания на одноосное растяжение и измерялась микротвердость по методу Виккерса. Удельная электропроводность измерялась вихретоковым методом при комнатной температуре.

На рис. 1 представлены изображения ПЭМ и дифракционные картины, демонстрирующие типичную микроструктуру образцов Al-Ma-Zr TO и Al-Ma-Zr TO ИПДК. Микроструктура сплава после длительного старения характеризуется крупными зернами со средним размером зерна ~2 мкм. В данном состоянии наблюдается большое количество наноразмерных частиц вторичной фазы со средним размером ~23 нм. После обработки ИПДК структура сплава становится ультрамелкозернистой (УМЗ), зерна принимают равноосную форму и их средний размер составляет ~400 нм. Количество частиц вторичной фазы после обработки ИПДК значительно уменьшается, рефлексы от нее на дифракционной картине отсутствуют.

Рисунок 1 - Микроструктура сплава Al-Mg-Zr после TO (а) и после TO и ИПДК (б)

В таблице 1 приведены результаты ДОРЭ и РСА для сплава Al-Mg-Zr и для сравнения для сплава Al–0.4Zr (мас.%) [4] в для УМЗ состояниях. Можно отметить, что в сплаве Al-Mg-Zr значительно меньше средний размер зерна и в ~5 раз больше плотность дислокаций L_{dis}.

Таблица 1 - Микроструктурные данные по результатам ДОРЭ и РСА. d_{av} – средний размер зерна, $f_{\geq 15}$ – доля большеугловых границ зерен, D_{XRD} - средний размер областей когерентного рассеяния, $< \varepsilon^2 >^{1/2}$ – уровень микроискажений кристаллической решетки, L_{dis} – плотность дислокаций.

	<i>d_{av}</i> (нм)	f _{≥15} (%)	<i>D_{XRD}</i> (нм)	$< \varepsilon^2 >^{1/2}$ (%)	L _{dis} (м ⁻²)	Ист.
Al-Mg-Zr_TO_ИПДК	400±12	88	304±15	0.026±0.001	1.0·10 ¹³	-
AI-0.4Zr_TO_ИПДК	945±17	78	310±10	0.006±0.002	2.3·10 ¹²	[4]

На рис. 2 показано изменение физико-механических свойств вследствие обработки ИПДК предварительно состаренного сплава Al-Mg-Zr. Значения прочностных свойств после ИПДК значительно увеличились: микротвердость (H_v) на ~130%, условный предел текучести ($\sigma_{0.2}^{exp}$) на ~270%, предел прочности (σ_{UTS}) на ~200%, при этом пластичность (δ) значительно уменьшилась до ~2.7% и электропроводность (ω) понизилась на ~3.6% IACS.

Рисунок 2 - Микротвердость (*H_V*), условный предел текучести (σ^{exp}_{0.2}), предел прочности (σ_{UTS}), пластичность (δ) и электропроводность (ω) сплава AI-Mg-Zr до и после обработки ИПДК и сплава AI-0.4Zr после обработки ИПДК [4]

Для сравнения также приведены значения прочностных свойств и электропроводности для предварительно состаренного и обработанного ИПДК сплава Al-0.4Zr [4]. Видно, что легирование Mg даже в таком небольшом количестве как 0.53 мас.% привело к колоссальному увеличению прочности (рис. 2).

На основе микроструктурных данных были проведены оценки вкладов возможных механизмов в общее упрочнение, которое является их суперпозицией:

$$\sigma_{0.2}^{th} = \sigma_0 + \sigma_{SS} + \sigma_{dis} + \sigma_{GB} + \sigma_{Or}$$

где где σ_0 =10 МПа – напряжение Пайерлса-Набарро для кристаллической решетки AI, $\sigma_{
m SS}$ - твердорастворное упрочнение, $\sigma_{
m dis}$ - дислокационное упрочнение, $\sigma_{
m GB}$ зернограничное упрочнение и $\sigma_{
m Or}$ – упрочнение частицами вторичной фазы по механизму Орована. Вклады рассчитывались аналогично [4]. В таблице 2 приведены результаты полученных оценок для УМЗ сплавов Al-Mq-Zr и Al-0.4Zr [4] в сравнении с экспериментально измеренными значениями условного предела текучести. Видно, что увеличение прочности Al-Ma-Zr TO ИПДК сплава колоссальное невозможно объяснить действием только традиционных механизмов упрочнения, характерных для крупнозернистого состояния. Известно, что Ма легко сегрегирует в ГЗ при обработке алюминиево-магниевых сплавов методами ИПДК [5]. По-видимому, и в случае Al-Mg-Zr сплава возможна сегрегация/нанопрецепитация магния в ГЗ в процессе обработки ИПДК, которая, наиболее вероятно, и приводит к дополнительному колоссальному **УПРОЧНЕНИЮ**.

Таблица 2 - Теоретические оценки вкладов в упрочнение для УМЗ сплавов AI-Mg-Zr и AI-0.4Zr [4]

	□ ₀ (МПа)	□ _{<i>св</i> (МПа)}	□ _{ss} (МПа)	□ _{dis} (МПа)	□ _{0r} (МПа)	σ _{0.2} (МПа)	σ _{0.2} (МПа)
Al-Mg-Zr_TO_ИПДК	10.0	110.7	42.5*	24.2	122.0 *	309.4	401.5
Al-0.4Zr_TO_ИПДК	10.0	72.0	4.5	11.3	-	97.8	97.7

* – оценены максимально возможные значения вкладов, то есть твердорастворный вклад рассчитан в приближении, что все легирующие элементы находятся в твердом растворе, а вклад по механизму Орована в приближении, что все атомы Zr находятся в частицах Al₃Zr, обеспечивающих максимальное дисперсионное упрочнение.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 19-08-00474.

Литература

1. Belov N.A. et al. Effect of Zr additions and annealing temperature on electrical conductivity and hardness of hot rolled Al sheets //Transactions of Nonferrous Metals Society of China. – 2015. – T. 25, № 9. – C. 2817-2826.

2. Orlova T. S. et al. Influence of severe plastic deformation on microstructure, strength and electrical conductivity of aged AI-0.4 Zr (wt.%) alloy //Reviews on Advanced Materials Science. – 2018. – T. 55. – №. 1-2. – C. 92-101.

3. Gubicza J. et al. Effect of Mg addition on microstructure and mechanical properties of aluminum //Materials Science and Engineering: A. – 2004. – T. 387. – C. 55-59.

4. Orlova T.S. et al. Effect of annealing on microstructure, strength and electrical conductivity of the pre-aged and HPT-processed Al-0.4 Zr alloy //Journal of Alloys and Compounds. – 2019. – T. 784. – C. 41-48.

5. Sauvage X. et al. Atomic-scale analysis of the segregation and precipitation mechanisms in a severely deformed AI–Mg alloy //Acta Materialia. – 2014. – T. 72. – C. 125-136.