СВОЙСТВА СПЛАВА ТІ₅₀РД₄₀NI₁₀, АТ.% С ВЫСОКОТЕМПЕРАТУРНЫМ ЭФФЕКТОМ ПАМЯТИ ФОРМЫ

Попов Н.Н., Пресняков Д.В., Ларькин В.Ф.

Федеральное государственное унитарное предприятие «Российский Федеральный Ядерный Центр – Всероссийский научно-исследовательский институт экспериментальной физики» (ФГУП «РФЯЦ-ВНИИЭФ»), г. Саров, Нижегородская обл., Россия, E-mail: NNPopov@vniief.ru

В настоящее время в Российской Федерации создаются новые реакторные установки на быстрых нейтронах. Учитывая сложность и опасность реакторных последние должны оснащаться дополнительными установок, устройствами безопасности, том числе основанными на применении сплавов в С высокотемпературным эффектом памяти формы (ЭПФ). Одно из таких устройств, предложенное нами, описано в [1]. Отработка конструкции устройства с применением сплава с памятью формы системы Ti-Ni-Nb-Zr при температурах до 100 °C показала его хорошую работоспособность. Для проверки срабатывания устройства при высоких температурах нами выбран высокотемпературный сплав с памятью формы (ВСПФ) Ti₅₀Pd₄₀Ni₁₀, aτ.%.

На созданной во ФГУП «РФЯЦ-ВНИИЭФ» экспериментально-методической базе проведены комплексные исследования свойств сплава. Получены сведения об элементном и фазовом составах, о температурах фазовых превращений, механических и термомеханических характеристиках (TMX). Исследования проводили на образцах, изготовленных из полосы толщиной 2,04 мм и прутка диаметром 5,85 мм. Подробно методики исследований описаны в [2, 3].

Термическую обработку (TO) образцов ВСПФ Ті₅₀Pd₄₀Ni₁₀, ат.% проводили по различным режимам (в течение 1 ч, охлаждение с печью):

- отжиг в вакууме при 450 °С (ТО № 1) полоса;
- отжиг в вакууме при 600 °С (ТО № 2) полоса, пруток;
- отжиг в вакууме при 850 °С (ТО № 3) полоса, пруток;
- отжиг при 400 °С (ТО № 4) пруток;
- отжиг при 600 °С (550 °С) (ТО № 5) пруток;
- отжиг при 850 °С (ТО № 6) пруток.

Методом электронно-зондового микрорентгеноспектрального анализа установлено, что значения концентраций (масс.%) для всех элементов в образцах полосы и прутка сплава в исходном состоянии находятся в допустимых пределах заказанных концентраций элементов: 33,1Ti-58,8Pd-8,1Ni, масс. доля по шихте, % или Ti₅₀Pd₄₀Ni₁₀, ат.%. Для образцов прутка после TO по сравнению с исходным состоянием средние значения концентраций Ti статистически значимо увеличились от 0,3 масс.% до 1 масс.%; средние значения концентраций Pd статистически значимо уменьшились от 0,3 масс.% до 1,1 масс.%; после TO № 3, № 5 средние значения концентраций Ni статистически значимо уменьшились на 0,2 масс.% и 0,1 масс.%, соответственно. Дефекты в виде пор и трещин в микроструктуре сплава не обнаружены.

Рентгеноструктурным методом установлено, что при *T* = 20 °C сплав полосы и прутка в исходном состоянии и после TO состоит из твердого раствора легирующего элемента Ni в TiPd в состоянии B19 с орторомбической решеткой (основная фаза). Рассчитанные значения параметров *a*, *b*, *c* кристаллических решеток сплавов в различных состояниях отличаются от своих стандартных значений на величину более 0,01 Å, что вызвано образованием твердого раствора на основе TiPd, а также наличием искажений и дефектов упаковки кристаллической решетки. Исследования кинетики мартенситных превращений показали, что в сплаве в исходном состоянии и после TO № 3 в процессе нагрева и последующего охлаждения фаза TiPd (B19) претерпевает полное превращение по одностадийной схеме B19↔B2.

Методом дифференциально-термического анализа (ДТА) для полосы и прутка сплава в исходном состоянии и после ТО определены температуры обратного (*A*_s, *A*_f) и прямого (*M*_s, *M*_f) мартенситного превращения (см. табл.), в исходном состоянии –

температуры плавления и рекристаллизации $T_{\rm kp}$, которые необходимы для определения условий наведения деформации при определении ТМХ сплава. Выявлено в основном небольшое различие между собой соответствующих средних значений температур фазовых превращений, которые происходят в достаточно узких интервалах температур $|A_{\rm s}-A_{\rm f}|$, $|M_{\rm s}-M_{\rm f}|$ и с небольшим гистерезисом $(A_{\rm s}-M_{\rm f})$. Температуры плавления полосы и прутка в исходном состоянии $T_{\rm пл}$ = 1117,0 °C одинаковы и различаются только в пределах погрешности измерения; температуры рекристаллизации $T_{\rm kp}$ отличаются на 60 °C и составляют 1366,0 °C и 1306,5 °C, соответственно.

Таблица - Результаты определения методом ДТА температур фазовых превращений в полосе и прутке сплава Ti₅₀Pd₄₀Ni₁₀, ат.% в исходном состоянии и после TO

A₅, °C	A _f , °C	M₅, °C	<i>M</i> _f , °C	A₅-A _f , °C	$ M_{\rm s}-M_{\rm f} , ^{\circ}{\rm C}$	(<i>A</i> ₅- <i>M</i> _f), °C
Полоса						
408,5÷410,0	437,0÷444,0	382,5÷397,5	371,0÷376,5	28,0÷34,5	11,0÷21,0	32,5÷38,5
Пруток						
397,5÷409,5	428,0÷439,0	374,5÷395,0	360,0÷365,5	28,5÷36,0	14,5÷31,0	32,5÷45,5

По результатам металлографических исследований установлено, что микроструктура образцов полосы и прутка сплава в исходном состоянии и после ТО состоит из зерен фазы на основе TiPd, имеющих мартенситную структуру (во всех случаях), а также дисперсных включений (кроме полосы после ТО № 1 и № 3). Среднее значение среднего условного размера зерна составляет:

– в полосе сплава в исходном состоянии и после TO № 2 33-36 мкм, разнозернистости практически не наблюдается;

– в прутке сплава в исходном состоянии по краю и в середине образца 29,9±3,0 мкм и 63,9±7,1 мкм (*К*_{вар} = 21 % и 14 %), соответственно, и статистически значимо различаются в 2 раза; после ТО № 4, № 5 в середине образцов 49,7±2,2 мкм и 46,3±3,3 мкм, соответственно; после ТО № 3 в середине образца 54,1±4,2 мкм.

Средние значения микротвердости по Виккерсу составляют:

– для полосы сплава 243±6 кгс/мм² (исходное состояние), 243±5 кгс/мм² (ТО № 1), 232±4 кгс/мм² (ТО № 2), 225±3 кгс/мм² (ТО № 3);

– для прутка сплава 256±4 кгс/мм² (исходное состояние); 310±7 кгс/мм² (TO № 4); 295±6 кгс/мм² (TO № 5); 271±5 кгс/мм² (TO № 2); 251±4 кгс/мм² (TO № 3),

при этом разброс значений (*К*_{вар} = (3-6) %) и ошибка среднего значения Δ небольшие.

По результатам механических испытаний на растяжение определены основные механические характеристики полосы и прутка исследуемого сплава в исходном состоянии и после термообработки: фазовый предел текучести σ_{ϕ} , предел текучести, обусловленный дислокационным пластическим течением σ_{τ} , предел прочности σ_{B} , максимальная деформация образца ε_{o}^{max} , относительное удлинение δ .

При температурах испытания $T = (380 \div 370)$ °C и скорости $\varepsilon \approx 3,1 \cdot 10^{-3} \text{ c}^{-1}$ для образцов M2×13 мм полосы после TO № 1, № 2, № 3 в сравнении с исходным состоянием и между собой не выявлено статистически значимого различия для характеристик $\sigma_{\rm B}$, $\varepsilon_{\rm o}^{\rm max}$, δ ; средние значения (для объединенных выборок): $\sigma_{\rm B} = 860$ МПа, $\varepsilon_{\rm o}^{\rm max} = 16,5$ %, $\delta = 9$ %.

При температуре испытания *T* = 23 °С и скорости $\dot{\varepsilon} \approx 1,2 \cdot 10^{-3}$ с⁻¹ для образцов М4×26 мм прутка максимальные значения $\sigma_{\rm B}$ = 1010 МПа и δ = 5 % получены в исходном состоянии; ТО № 4 уменьшает $\sigma_{\rm B}$ на 180 МПа и δ в 1,7 раза, ТО № 6 – $\sigma_{\rm B}$ на 220 МПа и δ в 2,5 раза по сравнению с исходным состоянием. При температуре испытания *T* = (170÷175) °С максимальные значения $\sigma_{\rm B}$ = 920 МПа и δ = 6 % получены в исходном состоянии; ТО № 4 уменьшает $\sigma_{\rm B}$ на 90 МПа и δ в 1,5 раза, ТО № 6 – $\sigma_{\rm B}$ на 210 МПа и δ в 1,2 раза по сравнению с исходным состоянием. При температуре испытания *T* = 325 °С при увеличении температуры отжига от 400 °С до 850 °С $\sigma_{\rm B}$ уменьшается на 50 МПа, а δ увеличивается в 1,3 раза.

Определены термомеханические характеристики полосы и прутка исследуемого сплава в исходном состоянии и после термообработки при различных температурах при нагреве до различных температур (проявлении ЭПФ) после предварительно наведенной деформации растяжением при различных температурах $T_{\rm Д}$ и общей наводимой деформации $\varepsilon_{\rm o}$ с различными скоростями наведения деформации $\dot{\varepsilon}$ (в зависимости от размера образца): характеристические температуры начала и окончания формовосстановления $A^{\rm H}_{\rm s}$ ЭПФ, $A^{\rm K}_{\rm f}$ ЭПФ, $A_{\rm s}$ ЭПФ, $A_{\rm f}$ ЭПФ; температурные интервалы

|A^н_{s эпф}-A^κ_{f эпф}|, |A_{s эпф}-A_{f эпф}|; величина термически обратимой деформации ε_{эпф} и степень восстановления формы η_{эпф} при проявлении ЭПФ.

Для образцов M2×13 мм полосы сплава при $T_{Д} = (380÷370)$ °C, $\varepsilon_{o} = 11$ % и $\dot{\varepsilon} \approx 3,1\cdot10^{-3}$ с⁻¹ наилучшие средние значения характеристик памяти формы $\varepsilon_{3\Pi\Phi} = 4,3$ % и $\eta_{3\Pi\Phi} = 0,57$ получены после TO № 2; при этом средние значения температур $A_{s \ 3\Pi\Phi} = 418$ °C, $A_{f \ 3\Pi\Phi} = 435$ °C, основное превращение происходит в узком интервале температур $|A_{s \ 3\Pi\Phi} - A_{f \ 3\Pi\Phi}| = 18$ °C. Для образцов M4×26 мм прутка сплава при $T_{Д} = (170 \div 175)$ °C, $\varepsilon_{o} = 9$ % и $\dot{\varepsilon} \approx 1,2\cdot10^{-3}$ с⁻¹ максимальные значения $\varepsilon_{3\Pi\Phi} = 2,4$ %, $\eta_{3\Pi\Phi} = 0,43$ получены после TO № 6 (что почти в два раза превышает эти характеристики в исходном состоянии и после TO № 4); при этом $A_{s \ 3\Pi\Phi} = 414$ °C, $A_{f \ 3\Pi\Phi} = 422$ °C, $|A_{s \ 3\Pi\Phi} - A_{f \ 3\Pi\Phi}| = 8$ °C.

Результаты проведенных исследований механических и термомеханических характеристик ВСПФ $Ti_{50}Pd_{40}Ni_{10}$, ат.% на образцах, вырезанных из прутка, показали, что в исходном состоянии и после различной термообработки они обладают недостаточными пластическими свойствами и характеристиками памяти формы для использования в качестве материала рабочего элемента устройства безопасности электрической системы, для которого желательны значения относительного удлинения δ не менее 10 % и значения термически восстановленной деформации $\epsilon_{ЭПФ}$ не менее 3,0 %. Вместе с тем, результаты, полученные на образцах, изготовленных из полосы, имеют приемлемые значения и будут использованы нами для создания устройств безопасности применительно к объектам атомной энергетики.

Список литературы

1. Попов Н.Н., Ларькин В.Ф. Устройство пассивной защиты ядерного реактора на быстрых нейтронах. Патент РФ № 2541515 МПК G21C 9/00. Опубл. 20.02.2015, Бюлл. № 5.

2. Попов Н.Н., Ларькин, В.Ф. Пресняков Д.В., Гришин Е.Н., Сысоева Т.И., Морозова Т.А., Потемкин Г.А, Костылева А.А. Исследование свойств сплава 50Ti-40Pd-10Ni с высокотемпературным эффектом памяти формы // ФММ. 2018. Т. 119. № 3. С. 303-316.

3. Попов Н.Н, Пресняков Д.В., Морозова Т.А., Гришин Е.Н. Исследование структуры и свойств высокотемпературных сплавов с памятью формы систем Ti-Pd-Ni и Ni-Ti-Hf // Материаловедение. 2018. №11. С.10-21.