МЕХАНИЧЕСКАЯ АКТИВАЦИЯ И ФОРМИРОВАНИЕ ВЫСОКОНАПОЛНЕННЫХ ПОЛИМЕРНЫХ КОМПОЗИЦИОННЫХ ПОРОШКОВ, СОДЕРЖАЩИХ НИТРИД БОРА

Ковалева С.А.¹, Жорник В.И.¹, Григорьева Т.Ф.², Витязь П.А.¹, Ляхов Н.З.² ¹Объединенный институт машиностроения НАН Беларуси, Минск, Беларусь sveta_kovaleva@tut.by ²Институт химии твердого тела и механохимии СОРАН, Новосибирск,

> Россия, grig@solid.nsc.ru

Перспективным способом получения композиционных порошков наполненных полимеров является технология твердофазного деформационного смешения, реализуемая в высокоэнергетических планетарных шаровых мельницах. Механическая активация (МА) полимера приводит к его модифицированию за счет изменений надмолекулярной структуры и молекулярного строения (процессов разрыва внутримолекулярных связей и процессов сшивки). Однако основополагающую роль в формировании композита в условиях МА играют фазовое состояние и степень дисперсности наполнителя, что в значительной мере определяет характер его взаимодействия с полимером и распределение в матрице.

Композиционные материалы сверхвысокомолекулярного полиэтилена (СВМПЭ) и ультрадисперсного политетрафторэтилена (УПТФЭ), наполненные дисперсными частицами карбида или нитрида бора, а также металлов (железо, вольфрам), находят различное применение как радиационно-защитные, обладающие комбинированными свойствами по защите от ү-, нейтронного и электромагнитного излучений, так и триботехнического назначения для изготовления узлов трения технических средств, эксплуатируемых в условиях холодного климата.

Целью работы является исследование влияния механической активации на формирование структурно-фазового состояния высоконаполненных композиционных порошков СВМПЭ/BN, УПТФЭ/BN, СВМПЭ/Fe/BN, УПТФЭ/Fe/BN.

В работе использовали порошки: СВМПЭ марки GUR 4120 производства Ticona GMbH с молекулярной массой 4·10⁶ г/моль и размером частиц 100–160 мкм; УПТФЭ с размером 0.1-1.0 мкм; нитрид бора гексагональный (*h*BN) марки ГМ; железо карбонильное с размером частиц 2-5 мкм и механокомпозит состава Fe/50мас.%BN.

Были получены композиты составов СВМПЭ+90мас.%BN, УПТФЭ+90мас.%BN, СВМПЭ+90мас%Fe/BN, УПТФЭ+90мас.%Fe/BN. Механическую активацию проводили в планетарной шаровой мельнице АГО-2 в среде аргона, с водяным охлаждением. Навеска обрабатываемой смеси 10 г, скорость вращения водила 1000 об/мин. Длительность синтеза - 2 мин.

Рентгеноструктурный анализ выполнен на дифрактометре D8 Advance (Bruker, Германия) с использованием характеристического излучения CuK_{α} . ИК исследования проведены с использованием ИК-Фурье спектрометра Nicolet iS10 (ThermoScientific) методом нарушенного полного внутреннего отражения на кристалле алмаза в диапазоне 4000-400 см⁻¹.

Интенсивная механическая обработка гексагонального нитрида бора *h*BN с железом (Fe+50%BN) уже при MA 2 мин приводит к изменению фазового состава. Помимо исходных фаз Fe и *h*BN регистрируется появление кубической модификации *c*BN, а также фаз нитрида железа FeN_{0.056} и борида железа Fe₂B (рис. 1, а). Появление фаз FeN_{0.056} и Fe₂B указывает на значительные структурные изменения у BN. Резкое снижение интенсивности линий (002) *h*BN может быть обусловлено и его частичной аморфизацией. При использование мягких и пластичных полимеров CBMПЭ, УПТФЭ и крупных порошков *h*BN кубический нитрид бора не образуется (рис. 1, б). В тоже время в образцах УПТФЭ/BN регистрируется появление намола железа.

Рисунок 1 – Дифрактограммы композитов в системах: а – Fe-50% *h*BN и CBMПЭ-90% Fe/BN, б – УПТФЭ-90% *h*BN и CBMПЭ-90% *h*BN; MA 2 мин, Ar

Рентгеноструктурный анализ показал увеличение параметра *с* кристаллической решетки *h*BN в системах с железом (табл. 1). Использование пластичных полимеров приводит к замедлению измельчения кристаллитов нитрида бора. Так, размер кристаллитов *L*_{*h*BN} в композите с СВМПЭ оказывается порядка 63 нм, в то время как при использовании УПТФЭ *L*_{*h*BN} находится на уровне 12 нм.

Особенностью структуры *c*BN в композитах CBMПЭ/Fe/BN и УПТФЭ/Fe/BN является увеличенный параметр кубической решетки *a* _{cBN} =0.3618-0.3619 нм, при этом увеличивается и размер кристаллитов с ~25 нм до ~45 нм. Формирование фазы *c*BN характерно для порошков с содержанием Fe. Можно предположить, что именно железо является катализатором перехода гексагональной фазы в кубическую [1]. Также переходу может способствовать и железо, получаемое в результате намола.

ASTM	Fe/BN	СВМПЭ/ Fe/BN	УПТФЭ/ Fe/BN	ΥΠΤΦЭ/BN	СВМПЭ/ВN
BN, P63/mmc					
<i>а</i> 0.2504 нм	0.24891	0.24845	0.24856	0.24931	0.2506
с 0.6656 нм	0.67206	0.67741	0.678	0.66694	0.6666
L, нм	6	7	5	12	63
BN, F-43m					
<i>а</i> 3.6158 нм	0.3615	0.3618	0.3619	-	-
L, нм	24	41	45		
Fe, Im-3m					
<i>а</i> 2.8664 нм	0.28664	0.2872	0.2875	0.2918	-
L, нм	23	14	14	9	

Таблица 1- Рентгеноструктурный анализ композитов на основе hBN после MA 2 мин

Для FT-IR спектра *h*BN в области 4000-400 см⁻¹ характерны полосы B–N внутриплоскостных асимметричных колебаний при 1380 см⁻¹ и полоса межплоскостных колебаний атомов B–N–B при 817 см⁻¹. В полученных образцах наблюдаются ассиметричные полосы поглощения гексагонального нитрида бора с максимумом 1308 см⁻¹ и 757 см⁻¹, а также широкая полоса 1000-1100 см⁻¹, характерная для B_nN_m фрагментов в sp³-гибридизации [2]. Большая ширина полосы указывает на то, что фрагменты связаны в трехмерную сетку.

Появление полос поглощения в области 3400-3000 см-¹ указывает на наличие групп ОН⁻ в структуре BN, что обусловлено его повышенной химической активностью по отношению к воде при аморфизации [3]. Полоса в диапазоне 3300-3200 см⁻¹ принадлежит валентным колебаниям В–ОН, а полоса 3400 см⁻¹ – валентным колебаниям N–H [5].

Рисунок 2 – ИК-Фурье спектры композитов: а – УПТФЭ-90% BN, СВМПЭ-90% BN, б – СВМПЭ-90% BN и СВМПЭ-90% Fe/BN; MA 2 мин, Ar

При измельчении *h*BN в процессе MA увеличиваются частоты колебаний внутриплоскостных и межплоскостных колебаний связей B-N по сравнению с исходным *h*BN, что может быть связано с усилением связи за счет увеличения содержания бора.

Значительное влияние на формирование композиционных частиц и изменение надмолекулярной структуры полимеров оказывают количество наполнителя и его дисперность. Так, при использовании крупных порошков, например hBN с размером частиц ~40 мкм, структура полимеров преимущественно сохраняется (в том числе и конформационная регулярность), несмотря на высокое содержание наполнителя (90 мас.%). Высокая степень наполнения полимеров приводит к небольшому сдвигу частот валентных колебаний, например для v_{as} C-F УПТФЭ с 1209 см⁻¹ до 1228 см⁻¹ что указывает на межмолекулярное взаимодействие с наполнителем. Интегральные полосы поглощения полимера в области деформационных колебаний полностью перекрываются интенсивными полосами поглощения дисперсного наполнителя. Регистрируемые полосы кристалличности могут указывать на увеличение степени кристалличности полимеров в условиях МА и их пластичности, что приводит к наблюдаемому росту частиц чешуйчатой формы в широком размерном диапазоне 50-400 мкм с равномерным распределением в них частиц наполнителя. Окислительная деструкция в полимерах не наблюдается. Применение дисперсных порошков Fe/BN приводит к увеличению содержания групп ОН⁻ в образце.

Работа выполнена в рамках совместного проекта БРФФИ-РФФИ при финансовой поддержке гранта БРФФИ №Т18Р-187 и гранта РФФИ № 18-53-00029. Список литературы

1. Шульженко А.А., Боримский И.А., Боримский А.И., Соколов А.Н., Белявина Н.Н., Тимофеева И.И., Быков А.И., Ткач В.М. Влияние интенсивности механической активации на структуру гексагонального нитрида бора// Породоразрушающий и металлообрабатывающий инструмент – техника и технология его изготовления и применени. – Вып. 14. - С.370-376

2. Чуканов Н.В., Чикалин В.И., Гуров С.В., Дубовицкий Ф.И. Структурные искажения в ультрадисперсном нитриде бора // Докл. АН СССР. -1989. - Т. 307, N. 6. - С. 1376-1380.

3. Стрелецкий А. Н., Перменов Д. Г., Стрелецкий К. А. и др. Механохимия гексагонального нитрида бора. 1. Разрушение и аморфизация при механической обработке // Коллоидный журнал. - 2010. – Т.72, № 4. - С. 532–541.