- конференции преподавателей и студентов, посвященной Году науки : в 2 т. / УО «ВГТУ». Витебск, 2017. T. 2. C. 86-88.
- 2. Попова, А. В. Информационный проект «Свет: дизайн и инновации» для центра урбанистических проектов и инициатив «Прастора» / А. В. Попова, О. В. Крупина; А. В. Попова, О. В. Крупина // Материалы докладов 50-й Международной научнотехнической конференции преподавателей и студентов, посвященной Году науки: в 2 т. / УО «ВГТУ». Витебск, 2017. Т. 2. С. 83–85.
- 3. Кириллова, И. Л. Основные тенденции современного дизайнерского оформления для рекламного агентства «Poster» / И. Л. Кириллова; И. Л. Кириллова // Тези доповідей ІІІ Міжнародної науково-практичної конференції «Сучасний стан легкої і текстильної промисловості: інновації, ефективність, екологічність», Херсон 12–17 вересня 2017 р. / Херсонський національний університет. Херсон, 2017. С. 132–134.
- 4. Попова, А. В. Проектирование фирменного стиля для Витебского областного баскет-больного клуба / А. В. Попова, А. А. Студенцова; А. В. Попова, А. А. Студенцова // Международная научно-техническая конференция «Дизайн, технологии и инновации в текстильной и легкой промышленности» (Инновации—2016) : сборник материалов, 15—16 ноября 2016 г. : в 4 ч. / ФГБОУ ВПО «МГУДТ». Москва, 2016. Ч. 4. С. 161—163.
- 5. Цели и задачи рекламы: [Электронный ресурс]. Екатеринбург, 2014. Режим доступа http://adindustry.ru. Дата доступа: 01.05.2017 г.
- 6. Фирменный стиль: его функции и основные элементы: источник [www.sdo.elitarium.ru] / Режим доступа [www.sdo.elitarium.ru/firmennyj-stil-funkcii-elementy]. Дата доступа: 15.05.2017 г.

УДК 677-487.521

РАЗРАБОТКА НАМОТОЧНЫХ МЕХАНИЗМОВ ДЛЯ ФОРМИРОВАНИЯ ПАКОВОК С УПРАВЛЯЕМОЙ СТРУКТУРОЙ

Колесников В.А., асс., Бакалов Е.С., асп.

Санкт-Петербургский государственный университет промышленных технологий и дизайна, Санкт-Петербург, Российскаяч Федерация

Ключевые слова: намоточный механизм, паковка, управляемая структура.

Реферат. Разработаны экспериментальные стенды для прецизионного наматывания нитевидных материалов. Стенды позволяют изменять передаточное отношение при намотке с высокой точностью за счет использования управляемых шаговых двигателей и дифференциального редуктора. Получены основные расчетные формулы.

Для экспериментального изучения закономерностей формирования намоточных структур [1] были спроектированы и изготовлены стенды [2] [3] прецизионного наматывания нитевидных материалов.

На рисунке 1 представлена кинематическая схема намоточного механизма с дополнительным шаговым двигателем электродвигателем и дифференциальным редуктором, который позволяет изменять передаточное отношение между валом бобинодержателя 20 и валом нитераскладчика 21. На рисунке 1 обозначено: 1, 2, 5, 6, 7, 8 – зубчатые колеса; 3, 4, 9, 10, 11, 12 – зубчатые шкивы; 13 – патрон; 14 – винтовой барабанчик; 15 – нитеводитель; 16 – асинхронный электродвигатель; 17 – шаговый электродвигатель; 18 – наматываемая паковка; 19 – нить; 20 – вал бобинодержателя; 21 – вал нитераскладчика.

Витебск 2018 1*53*

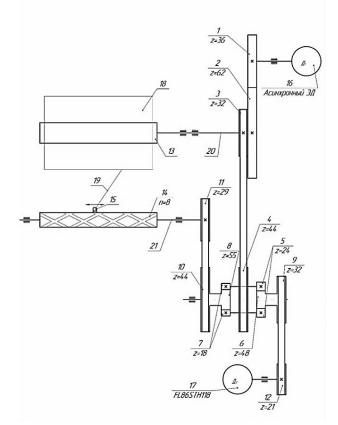


Рисунок 1 — Намоточный механизм с дополнительным шаговым электродвигателем

Угловая скорость вала 20 с наматываемой паковкой 18:

$$W_{na\kappa} = W_{\partial 1} \times \frac{z_1}{z_2},\tag{1}$$

где $w_{\partial 1}$ — угловая скорость асинхронного двигателя 16; z_1, z_2 — числа зубьев зубчатых колес 1 и 2.

Угловая скорость вала 21:

$$W_{e\bar{o}} = W_{\partial 1} \times \frac{z_1}{z_2} \times \frac{z_3}{z_4} \times \left(1 - \left(\frac{z_7 \times z_8}{z_6 \times z_5}\right)\right) \times \frac{z_{10}}{z_{11}} + W_{\partial 2} \times \frac{z_{12}}{z_9} \times \left(\frac{z_7 \times z_8}{z_6 \times z_5}\right) \times \frac{z_{10}}{z_{11}},$$
 (2)

где w_{o2} — угловая скорость шагового двигателя 17; z_i , $i=\overline{1,12}$ — числа зубьев зубчатых колес.

С учетом числа заходов винтового барабанчика n=8, отношение, определяющее структуру намотки, будет выглядеть следующим образом:

$$K = \frac{w_{na\kappa}}{w_{g\bar{0}}} \times 8. \tag{3}$$

Для воспроизведения заданной структуры необходимо задавать максимально точно передаточное отношение. В (3) входит параметр $w_{e\bar{b}}$, который задать с максимальной точностью не представляется возможным из-за непостоянного значения $w_{\partial 2}$, поскольку используется асинхронный электродвигатель, который по своим конструктивным особенностям не может поддерживать с требуемой точностью заданную угловую скорость.

Для решения данной проблемы был спроектирован и изготовлен усовершенствованный намоточный стенд, в котором асинхронный электродвигатель был заменен на шаговый. В данном стенде угловые скорости обоих приводов задаются с необходимой точностью. Вследствие использования зубчатых колес и зубчатых шкивов с четным и нечетным количеством зубьев при расчете передаточного отношения (3) выполнить деление без остатка

154

невозможно. Если при делении использовать десять значимых цифр, то это дает погрешность в передаточном отношении 0,0001, что в свою очередь приводит к абсолютно другой структуре, отличающейся от заданной.

Следующим этапом было проектирование и разработка намоточного стенда [4] (рис. 2) с прямым приводом вала бобинодержателя 2 и передаточным отношением 1/2 нитераскладчика 8 с индивидуальным шаговым двигателем 11. На рисунке 2 обозначено: 1 — виброгасящая муфта; 2 — вал бобинодержателя; 3 — компьютер управления; 4 — наматываемая паковка; 5 — патрон; 6 — нить; 7 — нитеводитель; 8 — винтовой барабанчик; 9, 10 — зубчатые шкивы; 11,12 — шаговые электродвигатели; 13 — вал нитераскладчика.

В данном намоточном механизме физическая связь двух шаговых двигателей 11 и 12 отсутствует. Они синхронизированы и управляются компьютером 3. При данной схеме отклонение в передаточном отношении минимально, так как везде постоянные значения и не изменяются в процессе намотки.

Разработанные экспериментальные стенды используются в настоящее время для изучения параметров намоточных изделий.

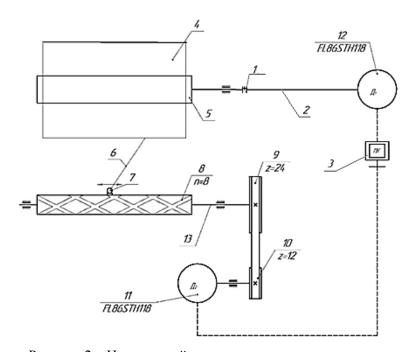


Рисунок 2 – Намоточный механизм с прямыми приводами

Список использованных источников

- 1. Рокотов, Н. В. Экспериментальный стенд прецизионной намотки / Н. В. Рокотов, В. А. Колесников, А. В. Марковец, К. И. Молчанов // Вестник Санкт-Петербургского государственного университета технологии и дизайна. Серия 1: Естественные и технические науки. 2017. № 2. С. 114—116.
- 2. Колесников, В. А. Разработка намоточного механизма для формирования паковок с управляемой переменной структурой / В. А. Колесников, Н. В. Рокотов, К. И. Молчанов, А. В. Марковец // XXVI Международная инновационно-ориентированная конференция молодых учёных и студентов (МИКМУС–2014): труды конференции (Москва, 17–19 декабря 2014 года) / Российская академия наук; РФФИ; Отделение энергетики, машиностроения, механики и процессов управления; Институт машиноведения им. А.А. Благонравова РАН. М.: Изд-во ИМАШ РАН, 2015. С. 503–506.
- 3. Колесников, В. А. Экспериментальное исследование процессов получения паковок различной структуры на намоточном стенде / В. А. Колесников, Н. В. Рокотов, А. В. Марковец, К. И. Молчанов // XXVII Международная инновационно-ориентированная конференция молодых ученых и студентов (МИКМУС–2015) : труды конференции (Москва, 2–4 декабря 2015 года) / Российская академия наук; РФФИ; Отделение энер-

Витебск 2018 155

- гетики, машиностроения, механики и процессов управления; Институт машиноведения им. А.А. Благонравова РАН. М.: Изд-во ИМАШ РАН, 2015. С. 419–422.
- Колесников, В. А. Получение различных намоточных структур на экспериментальном стенде / В. А. Колесников, Н. В. Рокотов, В. В. Смелкова // Молодые ученые – развитию Национальной технологической инициативы (ПОИСК – 2018): сб. материалов межвузовской (с международным участием) молодёжной научно-технической конференции. – Иваново: ИВГПУ, 2018. – С.274–275.

УДК 685.34.013.3

ИССЛЕДОВАНИЕ ХАРАКТЕРА ИЗМЕНЕНИЯ РАЗМЕРОВ СТОПЫ, ОПИРАЮЩЕЙСЯ НА ПЛАТФОРМУ ПРИ РАЗЛИЧНОЙ ВЫСОТЕ ПРИПОДНЯТОСТИ ПЯТКИ

Копылова И.Л., асп., Киселев С.Ю., проф., Волкова Г.Ю., д.э.н. Российский государственный университет им. А.Н. Косыгина (Технологии. Дизайн. Искусство), г. Москва, Российская Федерация

<u>Ключевые слова:</u> стопа, приподнятость пятки, антропометрические исследования, проектирование колодок.

Реферат. В статье рассмотрены исследования характера изменений формы и размеров стопы в зависимости от положения и нагрузки, проводимые в РГУ им. А.Н.Косыгина. С помощью 3D-сканера проводился обмер стопы, опирающейся на гипсовые платформы, профили которых были получены на основе анализа формы следа колодок с различной высотой приподнятости пятки. При этом были установлены значения основных обхватов стопы, построены графики зависимости обхватов стопы от высоты приподнятости пятки. Результаты исследований позволяют уточнить закономерности изменения формы и размеров стопы в зависимости от положения и нагрузки и будут использованы при установлении закономерностей перехода от формы и размеров стопы к параметрам проектируемых обувных колодок, чтобы тем самым повысить обоснованность их формы и размеров.

Рациональность обуви, в значительной степени, определяется соответствием ее формы и размеров форме и размерам стопы. В свою очередь, внутренние размеры и форма готовой обуви определяются, в основном, размерами и формой колодки, на которой она изготовлена. Однако колодка по форме и размерам не является копией стопы. Поэтому удобство обуви в процессе носки, прежде всего, зависит от соотношения между размерами и формой стопы и колодки [1, 2, 3, 4]. В связи с этим важной задачей является определение рациональных параметров обувной колодки и установление соотношений между формой и размерами сечений стопы и колодки.

В ходе проводимого нами исследования решалась задача определения характера изменений параметров стопы при изменении высоты приподнятости пятки.

В зависимости от высоты каблука меняется нагрузка на разные отделы стопы, изменяются ее форма, длина, обхватные и широтные параметры, поэтому форма и размеры колодки должны учитывать эти изменения.

При высоте каблука 2–4 см нагрузка на стопу от веса человека распределяется достаточно равномерно. Стопа не травмируется и не испытывает перегрузок. При ношении высоко-каблучной обуви (более 5 см) создается избыточная нагрузка на носочно-пучковую часть, что при длительной носке приводит к болям и развитию деформаций, таких как Hallux Valgus. Высокий каблук также плохо сказывается на суставах и может привести к остеоартриту.

Для уменьшения негативных последствий ношения высококаблучной обуви важной задачей является создание рациональной колодки, учитывающей изменения формы и размеров стопы при подъеме на каблук и обеспечивающей оптимальное распределение нагрузки.