ИССЛЕДОВАНИЕ СВОЙСТВ МАТЕРИАЛОВ ДЛЯ ОБРАБОТКИ КОЖИ Андреева О.А., Майстренко Л.А., Никонова А.В.

Киевский национальный университет технологий и дизайна, г. Киев, Украина, E-mail: nikonovaav@mail.ua

Упругопластические свойства натуральной кожи в значительной степени определяются условиями проведения процесса жирования и выбором жирующих материалов. В настоящее время жирование кож хромового дубления проводят с применением эмульсий жирующих материалов в виде композиций природных и (или) синтетических жиров, а также их модификатов, эмульгаторов и других веществ. С учетом широкого ассортимента и различного целевого назначения указанных материалов изучение их свойств с целью применения для обработки кожи всегда актуально [1]. В связи с этим в данной работе исследована серия современных нетоксичных анионных жирующих материалов: препараты SL и YY, представляющие собой смесь синтетических и натуральных сульфированных сложных эфиров; препарат LC — смесь натуральных и синтетических масел, сульфированных с лецитином; препарат PL — синтетический триглицерид в комбинации с неионогенными эмульгаторами.

При изучении основных физико-химических свойств исследуемых материалов установлено (табл. 1), что все они представляют собой вязкие вещества бело-желтого или желтовато-коричневого цвета. Наибольшие значения плотности и температуры плавления имел препарат YY вследствие его наиболее вязкой консистенции, наименьшие — препарат PL, имеющий жидкую консистенцию. При анализе устойчивости во времени 10 %-ных эмульсий наименее устойчивой оказалась эмульсия препарата YY. Большее содержание свободных жирных кислот характерно для препаратов SL, LC и PL, что указывает на эмульгирующую способность. При этом их более низкая по сравнению с препаратом YY плотность может свидетельствовать о наличии в структуре непредельных связей. Наибольшее число омыления препарата LC, возможно, обусловлено высоким содержанием низкомолекулярных кислот.

Таблица 1 – Характеристика исследуемых жирующих материалов

Препарат	Плотность, г/см³	Температура плавления, °C	Относительная вязкость 20 % эмульсии (20°C)	Устойчивость 10 % эмульсии, мин	Значение рН 10% эмульсии	Активная субстанция, %	Кислотное число, мг КОН/г	Число омыления, мг КОН/г
SL	0,970	27,4	8,5	45	6,9	71,5	127,6	159,8
YY	0,998	28,9	16,5	38	6,5	44,8	97,0	121,2
LC	0,946	25,5	15,3	40	6,2	74,0	127,7	175,2
PL	0,959	24,5	5,5	40	6,5	71,3	125,2	170,1

Особенности взаимодействия жирующих материалов с коллагеном изучали методом ИК-спектроскопии на модели этого белкового вещества в виде волокнистого препарата, полученного из гольевых отходов шкур крупного рогатого скота и предварительно обработанного хромовым дубителем при расходе $10,0\,\%$ от массы образцов в пересчете на Cr_2O_3 . Обработку жирующими материалами проводили в течение $1,0\,\%$ при температуре $50\,\%$ с и расходе $10,0\,\%$ от массы образцов в пересчете на активную субстанцию. ИК-спектроскопический анализ высушенных, измельченных и спрессованных в таблетки с KBr образцов выполняли на спектрофотометре TENSOR- $37\,\%$ (фирма BRUCER, Германия) в диапазоне частот $4000-400\,\%$ см⁻¹. Идентификацию ИК-спектров осуществляли с использованием характерных частот поглощения различных групп атомов с применением методов «базовой линии» и «внутреннего стандарта». За внутренний стандарт приняли частоты наименьшего изменения оптической плотности

препарата коллагена при 2950-2920 и 1340-1330 см⁻¹, соответствующие валентным (υ) и деформационным (δ) колебаниям групп -CH и -CH₂ [2-3]. Наиболее характерные полосы поглощения недубленого препарата коллагена приведены в таблице 2.

Таблица 2 – Характерные полосы поглощения на ИК-спектрах исходного препарата коллагена

			The state of the s
Частота,см ⁻¹	Тип соединения,группа	Частота,см ⁻¹	Тип соединения,группа
3330-3440	амид A (uNH), имины (uC=N), внутри- и межмолекулярные связи (uOH)	1330-1345	алканы (δCH ₃)
3070-3085	амид B (υNH)	1230-1245	амид III (10 % υСО, 30 % υСN, 30 % δNH, 10 % CN=O), спирты (δC=O, υC=O)
2920-2935	алканы (uCH ₂), алкены (uCH)	1200-1230	спирты втор, трет. (uC=O), карбоновые кислоты (COC)
1640-1665	амид I (80 % uCO, 10 % uCN, 10 % δNH)	1160-1200	спирты втор, трет. (uC=O)
1530-1550	амид II (40 % uCN, 60 % δNH), карбоновые кислоты (uCOO)	1080-1095	карбоновый скелет (C–C) спирты пер. (uC=O)
~1444	алканы (δCH_3), спирты (δOH), алкены (δCH)	~675	транс- и цис- алкены (δСН), спирты (δОН связанные)

О возможном характере взаимодействия в системе «коллаген-химические материалы» судили по изменению относительной оптической плотности Di/Dc (рисунок), при этом уменьшение интенсивности полос поглощения на спектрограммах обработанных образцов свидетельствовало о взаимодействии коллагена с химическими материалами, увеличение — как об этом взаимодействии, так и о присутствии функциональных групп (связей) применяемых материалов. Таким образом установили, что на спектрограммах препарата коллагена, обработанного только хромовым дубителем, уменьшение интенсивности полос поглощения происходит при частотах 3432, 1654, 1532 и 1232см⁻¹, соответствующих колебаниям азотсодержащих групп пептидных связей (амиды A, I, II и III), вторичных и третичных аминов, карбоксильных групп карбоновых кислот и гидроксильных групп спиртов. Это вполне соответствует современным представлениям о механизме процесса хромового дубления [2].

На спектрограммах хромированных и обработанных жирующими материалами образцов во всех случаях сохраняется широкая полоса в области 3000-3600 см⁻¹, характерная для -NH и -CO групп, внутри- и межмолекулярно связанных водородной связью. Уменьшение интенсивности полос поглощения при этих частотах может свидетельствовать и о взаимодействии жиров с пептидными группами коллагена. Наличие чётко выраженной полосы поглощения валентных колебаний -CH₂ групп при частоте 2925 см⁻¹, как и появление небольших узких пиков при 2854 и 2960 см⁻¹ в случае применения препарата YY, можно объяснить колебаниями валентных и симметрических -CH=CH- и -CH₂, групп, непредельных связей в структуре жиров, что не противоречит результатам их физико-химического анализа(табл.1).

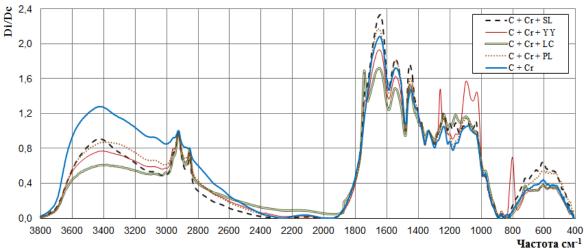


Рисунок 1 – ИК-спектры препарата коллагена после обработки хромовым дубителем и жирующими материалами

В области более низких частот (1700-1300 см⁻¹) по влиянию на хромированный коллаген анализируемые жирующие материалы условно можно разделить на две группы. К первой группе следует отнести препараты SL и PL, применение которых приводит к увеличению интенсивности полос поглощения при 1651 и 1553 см⁻¹, указывающее как на присутствие спиртовых групп жирующих материалов, так и на химическое взаимодействие последних с -NH и -C=O группами коллагена с образованием водородных связей. Ко второй группе следует отнести препараты YY и LC, применение которых приводит к уменьшению интенсивности полос поглощения при тех же частотах и появлению пика при частоте 1745 см⁻¹, соответствующей деформационным колебаниям групп -C=O. Вероятно, это происходит вследствие образования в системе «коллаген-химические материалы» дополнительных связей с участием пептидных, гидроксильных и карбоксильных групп основного белка дермы.

После обработки образцов любым из жирующих материалов в области частот $1300\text{-}600~\text{см}^{-1}$ появляются пики, обусловленные колебаниями -CH₂, -CH=CH-, C–O–C и сульфогрупп жиров. При этом на спектрограммах препарата YY чётко выраженные пики обнаружены при частотах 1260, 1095, 1030 и 871 см⁻¹, ответственных за деформационные колебания -S=O групп эфиров. Изменение интенсивности пиков при $\sim 600~\text{см}^{-1}$ можно объяснить проявлением валентных и деформационных колебаний алканов, ненасыщенных связей в структуре жира, а также -CH₂ групп коллагена.

Полученные результаты указывают на возможность применения исследуемых материалов для обработки кожи благодаря таким их свойствам, как нетоксичность, легкоплавкость, эмульгирующая и реакционная по отношению к коллагену способность. Это будет учтено в дальнейшем при разработке новых технологий.

Список литературы:

- 1. Modern technology of oils, fats&its derivatives / NIIRBoard. Asia Pacific Business PressInc., 2013. 576 p.
- 2. Практикум по химии и технологии кожи и меха / А.Г. Данилкович, В.И. Чурсин. М.: ЦНИИКП, 2002. 412 с.
- 3. ИК-спектры основных классов органических соединений [Справочные материалы] / Б.Н. Тарасевич. М.: МГУ, 2012. 55 с.