СИНТЕЗ ПРИ ВОЗДЕЙСТВИИ ВЫСОКИХ ДАВЛЕНИЙ И ТЕМПЕРАТУР СОЕДИНЕНИЯ CuBS₂

¹Желудкевич А.Л., ¹Игнатенко О.В., ¹Гончаров В.С., ¹Коновалова А.В. ¹Государственное научно-производственное объединение «Научно-практический центр Национальной академии наук Беларуси по материаловедению», е. Минск, Беларусь, E-mail: zheludkevich27@gmail.com

В последнее время весьма привлекательными являются многокомпонентные полупроводниковые материалы, в состав которых входит три и более химических элементов, характеризующиеся большим разнообразием и широтой диапазона изменений электрофизических и оптических свойств по сравнению с элементарными и бинарными полупроводниками. Среди них заметное место занимают тройные халькогенидные соединения типа $A^IB^{III}C^{VI}_2$ (где A^I –Cu, Ag; B^{III} –Fe, Ga, B; C^{VI} –S, Se) со структурой халькопирита.

Тройные полупроводниковые соединения класса $A^{l}B^{lll}C^{Vl}_{2}$ кристаллизуются в структуре типа халькопирита $CuFeS_{2}$ [1]. Кристаллическая структура халькопирита принадлежит к пространственной группе D_{2d}^{12} (2m и является сверхрешеткой структуры сфалерита ZnS (пространственная группа T_{d}^{2} (3m). Элементарную ячейку халькопирита можно рассматривать как усложненный вариант решетки сфалерита [2]. Как и в решетке сфалерита, катионы (по 2 атома элементов I и III группы периодической системы) образуют правильный тетраэдр, в центре которого находится анион (халъкоген VI группы), соответственно, каждый анион тетраэдрически окружен четырьмя катионами согласно рисунку 1, то есть в решетке халькопирита каждый атом

периодической системы) образуют правильный тетраэдр, в центре которого находится анион (халъкоген VI группы), соответственно, каждый анион тетраэдрически окружен четырьмя катионами согласно рисунку 1, то есть в решетке халькопирита каждый атом имеет четырех, ближайших соседей и координационное число равно 4. Примитивная ячейка халькопирита содержит 8 атомов, т.е. две формульных единицы. Химическая связь в полупроводниках $A^IB^{III}C^{VI}_2$ по своей природе является промежуточной между гомеополярной (ковалентной) и гетерополярной (ионной) [3].

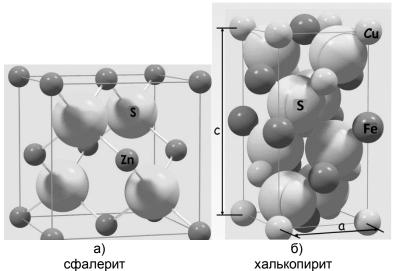


Рисунок 1 – Элементарная ячейка сфалерита и халькопирита

Существуют разные способы получения данных соединений [4]. В данной работе рассматривается способ получения $CuBS_2$ при воздействии высокого давления (до 5 $\Gamma\Pi a$) и температуры (до 1500 °C).

Установка для синтеза соединения $CuBS_2$ при высоком давлении и температуре включает в себя гидравлический пресс ДО 137 A, аппарат высокого давления (АВД), силовой трансформатор для электрического нагрева реакционного объема камеры высокого давления и программатор синтеза «OPTRON». Синтез осуществлялся в АВД с твердосплавными матрицами типа «наковальня с лункой».

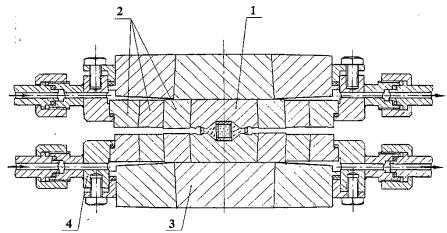


Рисунок 2 – Устройство высокого давления для синтеза сверхтвердых материалов; 1 – твердосплавные матрицы с контейнером и нагревательным элементом; 2 – стальные поддерживающие кольца; 3 – твердосплавные опорные плиты с поддерживающими кольцами; 4 – корпус водяного охлаждения (стрелками указано направление входа и выхода воды)

Устройство высокого давления типа «наковальня с лункой» (рис.2) состоит из двух встречно перемещающихся твердосплавных матриц 1 (из ВК-6), скрепленных по боковым поверхностям стальными поддерживающими кольцами 2 (сталь 35 ХГСА). Плоские торцевые поверхности матриц соприкасаются с опорными плитами 3 (твердый сплав ВК-15), которые поддержаны бандажными кольцами 4. Внутри матриц помещается контейнер, изготавливаемый из литографского камня или пирофиллита с графитовым нагревателем и таблеткой реакционной смеси. При нагрузке в контейнере квазигидростатическое оцениваемое создается состояние, единицах гидростатического давления. Нагрев реакционной смеси осуществляется пропусканием электрического тока через графитовый нагреватель. Большая плотность теплового потока, проходящего через твердосплавные матрицы, находящиеся в тепловом и электрическом контакте с нагревательным элементом, приводит к быстрому их разогреву. Поэтому для термостатирования аппарат помещали в корпус с водяным охлаждением (стрелками указано направление входа и выхода воды). Это обеспечивает стабильность теплового режима в реакционном объеме.

Нами был синтезирован ряд образцов соединений системы Cu-B- S_2 . Синтез проводился при давлении 5 ГПа (с учетом термического прироста давления, равного \sim 0,8 ГПа), при температурах от 500 °C до 1500 °C и в временных рамках синтеза от 1 до 600 секунд в твердосплавных камерах высокого давления типа «наковальня с лункой» в контейнерах из литографского камня. Подобранные условия синтеза позволили получить тройное халькогенидное соединение с высокой степенью фазовой чистоты.

Синтез проводили из элементарных составляющих, таких как: Cu –порошок меди, чистота 99,99%, размер частиц <50 мкм; B – порошок бора, чистота 99,9%; S – порошок серы, чистота 99,99%. Исходное стехиометрическое соотношение шихты равнялось $Cu+B+S_2=1:1:2$ ($CuBS_2$).

Исследования проводились с использованием дифрактометра ДРОН-3М в Cu- K_{α} -излучениях при комнатной температуре. Для отсечения K_{β} компонент излучений использовался графитовый монохроматор. Шаг сканирования составлял не более 0.03 градуса, время экспозиции — не менее 5 секунд. Фиксация данных производилась автоматически. Исследования кристаллической структуры проводились методом полно профильного анализа Ритвельда рентгеноструктурных данных. Уточнение спектров проводилось с помощью программного комплекса FullProf.

По результатам проведенных синтезов определено оптимальное время синтеза для получения соединений системы $Cu-B-S_2$. Определена зависимость процессов фазообразования и физические характеристики в системе $Cu-B-S_2$ от продолжительности синтеза. Начиная с 500 °C начинает образовываться тройное

халькогенидное вещество $CuBS_{2-x}(puc.3)$. Наряду с $CuBS_{2-x}$ в образце присутствуют двойные сульфиды CuS_2 и BS.

При увеличении времени синтеза и температуры идет процесс диффузии и перераспределения, в образце начинает доминировать $CuBS_{2-x}c$ незначительным присутствием примесей (не до конца прореагировавших исходных веществ и продуктов предреакций двойных соединении системы $Cu-B-S_2$).

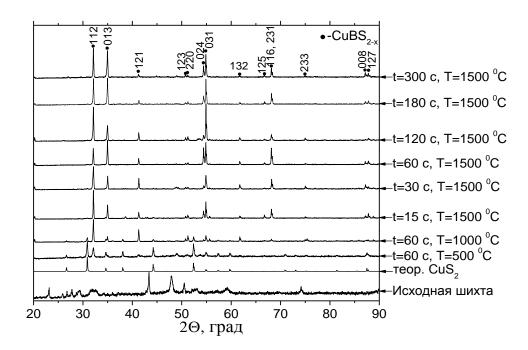


Рисунок 3 – Спектры рентгеновской дифракцииобразцов, полученных под высоким давлением 5 ГПа

Полученное тройное полупроводниковые соединения $CuBS_{2-x}$ имеет тетрагональную сингонию (типа халькопирит). Элементарную ячейку $CuBS_{2-x}$ можно рассматривать как усложненный вариант решетки сфалерита CuS_2 (кубическая сингония), в которой произошла упорядоченная замена металла, имеющего валентность Z, атомами двух металлов, валентность которых в среднем также равна Z. Такая замена ведет к приблизительно двукратному увеличению вдоль оси c размеров ячейки, так что $c/a \approx 2$ (a, c —параметры элементарной ячейки). По методу Ритвельда были установлены параметры тетрагональной кристаллической ячейки $CuBS_2$ a=0.5044 нм и c=0.8947 нм.

Работа выполнена при поддержке Белорусского республиканского фонда фундаментальных исследований (T16MC-009).

Список литературы:

- 1. Hahn H., Frank G., Klinger W. u. a. Über einige ternäre Chalkogenide mit Chalkopyritstruktur// Z. Anorg. Und Allgem. Chemie.-1953.-Bd.271, №3/4.-S.153-170.
 - 2. Wagner S. Chalkopyrites// Topics in Applied Physics.-1977.-Vol. 17. P.171-196.
- 3. Кошкин В.М., Комник Ю.Ф., Орлова С. Д. Некоторые особенности химической связи в многокомпонентных полупроводниковых соединениях//Сб. Химическая связь в полупроводниках и твёрдых телах. Мн.:1965.-С.304-310.
- 4. Takahiro Kajiki, Yamato Hayashi, Hirotsugu Takizawa //High-pressure synthesis of anew coppert hioborate, CuBS₂// Materials Letters 61 (2007) 2382–2384