ВЛИЯНИЕ ВЫСОКОФЛЮЕНСНОГО ИОННОГО ОБЛУЧЕНИЯ НА СТРУКТУРНО-ФАЗОВОЕ СОСТОЯНИЕ НАНОСТРУКТУРИРОВАННЫХ ПОКРЫТИЙ (TiHfZrVNb)N ¹Константинов С.В., ¹Комаров Ф.Ф., ²Погребняк А.Д., ¹Пилько В.В.

¹Научно-исследовательское учреждение «Институт прикладных физических проблем имени А.Н. Севченко» БГУ,

г. Минск, Беларусь, E-mail: komarovF@bsu.by,mymail3000@tut.by ²Сумский государственный университет, г. Сумы, Украина

Высокоэнтропийные нитридные системы, такие как (TiHfZrVNb)N представляют большой интерес ввиду своих уникальных свойств. Как было показано в работе [1] при экстремальном увеличении энтропии системы релаксационные процессы не успевают происходить, и система остаётся в неравновесном состоянии. В случае покрытий это способствует улучшению важных эксплуатационных свойств их таких, как твёрдость, износостойкость, коррозионная стойкость, жаростойкость и жаропрочность [2]. Поведение этого интересного для покрытий класса материалов при воздействии потоков ионизирующих излучений, и, в частности, быстрых ионов в литературе не рассматривалось.

Покрытия (TiHfZrVNb)N были нанесены методом сепарируемого вакуумнодугового осаждения с различным потенциалом смещения на подложке Ub и при различном парциальном давлении азота Р в вакуумной камере (табл. 1). Использовался вакуумно-дуговой источник «Булат-3Т» с ВЧ-генератором [3]. Образцы подвергались облучению ионами гелия с энергией 500 кэВ и флюенсами от 5 $\cdot 10^{16}$ до 3.10¹⁷ AN2500 ион/см²на ускорителе ионов фирмы «HighVoltageEngineeringEuropeB.V.». Затем проводился термический отжиг покрытий при температура 773 К в течении 15 мин. Состав облучённых покрытий изучался методом резерфордовского обратного рассеяния (РОР) ионов гелия с энергией 1,5МэВ. Структура покрытий исследовалась методами оптической микроскопии, рентгеноструктурного и фазового анализа на установке ДРОН-3. Также структура и морфология покрытий исследовались методом сканирующей электронной микроскопии на электронном микроскопе HitachiSU3400.

Методом РОР (табл.1) установлено однородное распределение концентрации элементов по толщине покрытия.

Nº	U _b , B	Р, Па	Концентрация, ат. %						
			N	Ti	V	Zr	Nb	Hf	Параметр решётки, нм
505	-110	5·10 ⁻¹	49.15	16.63	5.91	8.17	8.88	11.26	0.4405
507	-50	5·10 ⁻¹	51.13	25.31	4.72	5.70	6.31	6.84	0.4362
512	-200	8·10 ⁻²	46.65	17.03	2.79	12.01	12.54	8.99	0.4435
515	-200	3·10 ⁻²	36.05	20.13	2.28	17.12	17.50	6.93	0.4433
523	-200	2.3·10 ⁻¹	43.44	17.80	1.45	16.39	16.99	3.92	0.4408

Таблица 1 – Элементный состав покрытия (TiHfZrVNb)N (ат. %)

Наличие вредных примесей, таких как кислород, сера, фосфор не обнаружено, что свидетельствует о высоком качестве полученных плёнок покрытий. Установлено наличие азота в составе покрытий на уровне 50 ат.%.

На рисунке 1 представлены рентгеновские дифрактограммы от покрытий (TiHfZrVNb)N до (а) и после (б) облучения ионами гелия с энергией 500 кэВ и флюенсом 2·10¹⁷ ион/см² и отжига.

Общая характеристика дифракционной картины от покрытий (TiHfZrVNb)Nпосле облучения ионами гелия с энергией 500 кэВ и флюенсом 2·10¹⁷ ион/см² принципиально не изменяется, как это следует из рисунка 1,б. По-прежнему в покрытиях присутствует только одна фаза – твёрдый раствор азота в металлической ГЦК решётке типа NaCl. Текстура покрытий типа (111) также сохраняется после облучения. Смещений угловых положений рефлексов от кристаллографических плоскостей отражения не происходит

после облучения, что свидетельствует о постоянстве периода кристаллической решетки покрытий до и после облучения. Отсутствие сегрегаций новых фаз после облучения свидетельствует о стабильности фазы твердого раствора (TiHfZrVNb)N, несмотря на сложный элементный состав и высокую энтропию системы. Не обнаружено аморфизации вследствие облучения покрытий.

При этом установлено, что облучение ионами гелия до флюенсов 1·10¹⁷– 2·10¹⁷ ион/см² приводит к измельчению кристаллитов покрытий (TiHfZrVNb)N. Так, размер кристаллитов покрытий (TiHfZrVNb)N после облучения ионами гелия с энергией 500 кэВ и флюенсом 2·10¹⁷ ион/см², рассчитанный по формуле Селякова-Шеррера [4], составил величину 5-10 нм при начальном среднем размере 240–250 нм, т.е. средний размер зерен уменьшился больше чем на порядок величины.

На рисунке 2 представлены микрофотографии покрытий (TiHfZrVNb)N до (а) и после облучения и отжига (б), полученные методом сканирующей электронной микроскопии (СЭМ).

Рисунок 1 – Рентгеновские дифрактограммы от покрытий (TiHfZrVNb)N: до облучения (а) и после облучения ионами Не⁺ с энергией 500 кэВ, флюенс 2·10¹⁷ ион/см² и отжига (б)

Флекинг (отшелушивание) покрытий (TiHfZrVNb)N наблюдался после облучения ионами He⁺ с энергией 500 кэВ и флюенсом 2 10¹⁷ ион/см² и отжига при температуре 500 °С и флюенсом 3 10¹⁷ ион/см² без отжига. На фотографиях отчётливо различимы кристаллиты покрытий. На рисунке 2,6 приведена фотография, снятая с области после отслоения части покрытия при облучении ионами гелия с флюенсом 3·10¹⁷ ион/см², рельеф выявляется более структурированный поверхности. когда Размер кристаллитов составил величину 240-250 нм до облучения (рис.2,а) и 5-15 нм после облучения ионами гелия с энергией 500 кэВ и флюенсом 3·10¹⁷ ион/см². Данные результаты подтверждают результаты рентгеноструктурного фазового анализа, где был установлен аналогичный размер кристаллитов покрытий до и после облучения. Следовательно, облучение высокими флюенсами ионов (3·10¹⁷ ион/см²) приводит к кристаллитов покрытий (TiHfZrVNb)N сильному измельчению на основе высоконтропийных сплавов. Анализ покрытий методом СЭМ не выявил заметных блистеров, следовательно, гелий не агломерируется в масштабные пузыри, по крайней мере до размеров 40-50 нм. Возможно, происходит накопление гелия в структуре покрытий после облучения на наноуровне, как это было показано в работе [5].

Рисунок 2 – Фотографии СЭМ микроструктуры покрытий (TiHfZrVNb)N: а – исходное покрытие, б – после облучения ионами He⁺ с энергией 500 кэВ и флюенсом 3·10¹⁷ ион/см² и отжига

Таким образом, установлено, что высокая энтропия системы (TiHfZrVNb)N стабилизирует формирование однофазной системы в виде неупорядоченного твёрдого раствора и предотвращает формирование интерметаллических соединений в процессе кристаллизации покрытия. Покрытия имеют структуру с размером кристаллитов 240-250 нм. Обнаружено, что облучение покрытий (TiHfZrVNb)N ионами гелия с энергией 500 кэВ не приводит к заметным изменениям структурно-фазового состояния их до флюенса 2·10¹⁷ ион/см² кроме измельчения среднего размера кристаллитов. Также установлено отсутствие макро- и микроблистеринга покрытий при всех исследованных флюенсах облучения. При облучении с флюенсом 3·10¹⁷ ион/см² происходит эксфолиация (отшелушивание) плёнки покрытия до глубины локализации максимума концентрации радиационно-индуцированных дефектов и внедренного гелия.

Список литературы:

1. Структура и свойства высокоэнтропийных сплавов и нитридных покрытий на их основе / А. Д. Погребняк[и др.]. – Успехи химии. – 2015. – Т. 83, Вып. 11. – С. 1027– 1061.

2. Huang, P. K. Effects of nitrogen content on structure and mechanical properties of multi-element (AlCrNbSiTiV)N coating // P. K. Huang, J. W. Yeh. – Surface and Coatings Technology. – 2009. – Vol. 203. – p. 1891–1896.

3. Комаров, Ф. Ф. Радиационная стойкость высокоэнтропийных наноструктурированных покрытий (Ti,Hf, Zr, V, Nb)N / Ф. Ф. Комаров, А. Д.Погребняк, С. В. Константинов // Журнал технической физики. – 2015. – Т. 85, Вып. 10. – С. 106–111.

4. Русаков А. А. Рентгенография металлов /А. А. Русаков. – М.: Атомиздат, 1977. – 480 с.

5. Ion irradiation stability of multilayered AIN/TiN nanocomposites / M. Milosavljević [et al.]. – Journal of Physics D: Applied Physics. – 2010. – Vol. 43. – p. 065302.